4-hydroxyestradiol and Ovarian-Neoplasms

4-hydroxyestradiol has been researched along with Ovarian-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for 4-hydroxyestradiol and Ovarian-Neoplasms

ArticleYear
Profiling the metabolome of uterine fluid for early detection of ovarian cancer.
    Cell reports. Medicine, 2023, 06-20, Volume: 4, Issue:6

    Ovarian cancer (OC) causes high mortality in women because of ineffective biomarkers for early diagnosis. Here, we perform metabolomics analysis on an initial training set of uterine fluid from 96 gynecological patients. A seven-metabolite-marker panel consisting of vanillylmandelic acid, norepinephrine, phenylalanine, beta-alanine, tyrosine, 12-S-hydroxy-5,8,10-heptadecatrienoic acid, and crithmumdiol is established for detecting early-stage OC. The panel is further validated in an independent sample set from 123 patients, discriminating early OC from controls with an area under the curve (AUC) of 0.957 (95% confidence interval [CI], 0.894-1). Interestingly, we find elevated norepinephrine and decreased vanillylmandelic acid in most OC cells, resulting from excess 4-hydroxyestradiol that antagonizes the catabolism of norepinephrine by catechol-O-methyltransferase. Moreover, exposure to 4-hydroxyestradiol induces cellular DNA damage and genomic instability that could lead to tumorigenesis. Thus, this study not only reveals metabolic features in uterine fluid of gynecological patients but also establishes a noninvasive approach for the early diagnosis of OC.

    Topics: Catechol O-Methyltransferase; Early Detection of Cancer; Female; Humans; Metabolome; Norepinephrine; Ovarian Neoplasms; Vanilmandelic Acid

2023
Estradiol 17β and its metabolites stimulate cell proliferation and antagonize ascorbic acid-suppressed cell proliferation in human ovarian cancer cells.
    Reproductive sciences (Thousand Oaks, Calif.), 2014, Volume: 21, Issue:1

    Estradiol 17β (E2β) and ascorbic acid (AA) have been implicated in cancer progression. However, little is known about the actions of biologically active metabolites of E2β, 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 2-methoxyestradiol (2ME2), and 4-methoxyestradiol (4ME2) synthesized sequentially by cytochrome P450, family 1, subfamily A (CYP1A1) and B (CYP1B1), polypeptide 1, and catechol-O-methyltransferase (COMT) on ovarian cancer. Herein, we examined the expression of CYP1A1, CYP1B1, COMT, and estrogen receptor α (ERα) and β (ERβ) in human ovarian surface epithelial (IOSE-385) and cancer cell lines (OVCAR-3, SKOV-3, and OVCA-432). We also investigated the roles of E2β, 2OHE2, 4OHE2, 2ME2, and 4ME2 in cell proliferation, and their interactive effects with AA on ovarian cells. We found the expression of CYP1A1, CYP1B1, COMT, ERα, and ERβ in most cell lines tested. Treating cells with physiological concentrations of E2β and its metabolites promoted (13%-42% of the control) IOSE-385 and OVCAR-3 proliferation. The ER blockade inhibited IOSE-385 (∼76%) and OVCAR-3 (∼87%) proliferative response to E2β but not to its metabolites. The ERα blockade inhibited (∼85%) E2β-stimulated OVCAR-3 proliferation, whereas ERβ blockade attenuated (∼83%) E2β-stimulated IOSE-385 proliferation. The AA at ≥250 μmol/L completely inhibited serum-stimulated cell proliferation in all cell lines tested; however, such inhibition in IOSE-385, OVCAR-3, and OVCA-432 was partially (∼10%-20%) countered by E2β and its metabolites. Thus, our findings indicate that E2β and its metabolites promote cell proliferation and antagonize the AA-suppressed cell proliferation in a subset of ovarian cancer cells, suggesting that blocking the actions of E2β and its metabolites may enhance AA's antiovarian cancer activity.

    Topics: 2-Methoxyestradiol; Aryl Hydrocarbon Hydroxylases; Ascorbic Acid; Catechol O-Methyltransferase; Cell Line, Tumor; Cell Proliferation; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Dose-Response Relationship, Drug; Drug Interactions; Estradiol; Estrogen Antagonists; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens, Catechol; Female; Humans; Ovarian Neoplasms; Time Factors

2014
Minocycline suppresses interleukine-6, its receptor system and signaling pathways and impairs migration, invasion and adhesion capacity of ovarian cancer cells: in vitro and in vivo studies.
    PloS one, 2013, Volume: 8, Issue:4

    Interleukin (IL)-6 has been shown to be a major contributing factor in growth and progression of ovarian cancer. The cytokine exerts pro-tumorigenic activity through activation of several signaling pathways in particular signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK)1/2. Hence, targeting IL-6 is becoming increasingly attractive as a treatment option in ovarian cancer. Here, we investigated the effects of minocycline on IL-6 and its signaling pathways in ovarian cancer. In vitro, minocycline was found to significantly suppress both constitutive and IL-1β or 4-hydroxyestradiol (4-OH-E2)-stimulated IL-6 expression in human ovarian cancer cells; OVCAR-3, SKOV-3 and CAOV-3. Moreover, minocycline down-regulated two major components of IL-6 receptor system (IL-6Rα and gp130) and blocked the activation of STAT3 and ERK1/2 pathways leading to suppression of the downstream product MCL-1. In female nude mice bearing intraperitoneal OVCAR-3 tumors, acute administration (4 and 24 h) of minocycline (30 mg/kg) led to suppression of IL-6. Even single dose of minocycline was effective at significantly lowering plasma and tumor IL-6 levels. In line with this, tumoral expression of p-STAT3, p-ERK1/2 and MCL-1 were decreased in minocycline-treated mice. Evaluation of the functional implication of minocycline on metastatic activity revealed the capacity of minocycline to inhibit cellular migration, invasion and adhesion associated with down-regulation of matrix metalloproteinases (MMP)-2 and 9. Thus, the data suggest a potential role for minocycline in suppressing IL-6 expression and activity. These effects may prove to be an important attribute to the upcoming clinical trials of minocycline in ovarian cancer.

    Topics: Active Transport, Cell Nucleus; Animals; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Nucleus; Estrogens, Catechol; Female; Gene Expression Regulation, Neoplastic; Humans; Interleukin-1beta; Interleukin-6; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Minocycline; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Invasiveness; Ovarian Neoplasms; Phosphorylation; Proto-Oncogene Proteins c-bcl-2; Receptors, Interleukin-6; Signal Transduction; STAT3 Transcription Factor

2013
4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells.
    Toxicology and applied pharmacology, 2004, Apr-01, Volume: 196, Issue:1

    Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1alpha and HIF-1beta subunits. HIF-1 expression is induced by hypoxia, growth factors, and activation of oncogenes. HIF-1 activates downstream target genes such as vascular endothelial growth factor A (VEGF-A), which plays an important role in tumor progression and angiogenesis. Estrogen exposure is considered to be the major risk factor for ovarian cancer. Estradiol (E2) is usually metabolized by CYP1A1/1A2 and CYP3A4 to the 2-hydroxy estradiol (2-OHE2) and 4-hydroxy estradiol (4-OHE2) in human liver. Many reports have suggested that the formation of 4-OHE2 is important for mammary carcinogenesis. However, the formation of 2-OHE2 may play an important role in exhibiting anticarcinogenic effects. In the present study, we have demonstrated that one of the catechol estrogen metabolites of E2, 4-OHE2, induces HIF-1alpha and VEGF-A expression at protein level in two human ovarian cancer cell lines, OVCAR-3 and A2780-CP70 cells, in dose- and time-dependent manners, whereas the other catechol estrogen metabolite of E2, 2-OHE2, does not alter HIF-1alpha and VEGF-A expression. To explore the mechanism of 4-OHE2-induced HIF-1alpha and VEGF-A expression, we studied whether phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase (MAPK) signaling pathways are involved in 4-OHE2-induced HIF-1alpha and VEGF-A expression. Our findings indicate that PI3K inhibitors, LY294002 and wortmannin, inhibited HIF-1alpha and VEGF-A expression, whereas MAPK inhibitor, PD98059, did not alter HIF-1alpha and VEGF-A expression induced by 4-OHE2. 4-OHE2, but not 2-OHE2, also induced Akt phosphorylation at Ser473 in dose- and time-dependent manners, and LY294002 and wortmannin inhibited Akt phosphorylation at Ser473 induced by 4-OHE2. Our results also indicated that the mTOR/FRAP inhibitor, rapamycin, inhibited 4-OHE2-induced HIF-1alpha and VEGF-A expression. These results suggest that the PI3K/Akt/FRAP signaling pathway is required for HIF-1alpha and VEGF-A expression induced by 4-OHE2, whereas the MAPK pathway is not required. The finding that induction of HIF-1alpha and VEGF-A expression occurs via the activation of the PI3K/Akt/FRAP signaling pathway could be an important mechanism of 4-OHE2-induced carcinogenesis.

    Topics: Cell Line, Tumor; Enzyme Inhibitors; Estradiol; Estrogens, Catechol; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Mitogen-Activated Protein Kinases; Ovarian Neoplasms; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Signal Transduction; Transcription Factors; Vascular Endothelial Growth Factor A

2004