4-hydroxyderricin has been researched along with Inflammation* in 3 studies
3 other study(ies) available for 4-hydroxyderricin and Inflammation
Article | Year |
---|---|
Xanthoangelol and 4-hydroxyderrcin suppress obesity-induced inflammatory responses.
Obesity-induced inflammation plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. Xanthoangelol (XA) and 4-hydroxyderrcin (4-HD), phytochemicals extracted from Angelica keiskei, have been reported to possess various biological properties. Whether XA and 4-HD alleviate obesity-induced inflammation and inflammation-induced adipocyte dysfunction was investigated.. For the in vitro study, a co-culture system composed of macrophages and adipocytes and macrophages stimulated with conditioned medium derived from fully differentiated adipocytes was conducted. For the in vivo study, mice were fed a high-fat diet supplemented with XA for 14 weeks.. XA and 4-HD suppressed inflammatory factors in co-culture system. Moreover, treatment of RAW macrophages with XA and 4-HD moderated the suppression of uncoupling protein 1 promoter activity and gene expression in C3H10T1/2 adipocytes, which was induced by conditioned medium derived from LPS-stimulated RAW macrophages. Also, XA and 4-HD inhibited c-Jun N-terminal kinase phosphorylation, nuclear factor-κB, and activator protein 1, the last two being transcription activators in activated macrophages. Furthermore, in mice fed the high-fat diet, XA reduced inflammatory factors within the white adipose tissue.. These results suggest that XA and 4-HD might be promising phytochemicals to suppress obesity-induced inflammation and inflammation-induced adipocyte dysfunction. Topics: Adipocytes; Angelica; Animals; Cell Differentiation; Chalcone; Coculture Techniques; Culture Media, Conditioned; Diet, High-Fat; Inflammation; JNK Mitogen-Activated Protein Kinases; Macrophages; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Obesity; Phosphorylation; Phytotherapy; Plant Extracts; Transcription Factor AP-1 | 2016 |
Inhibitory effects of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide-induced inflammatory responses in RAW264 macrophages.
The Japanese herb, Ashitaba (Angelica keiskei Koidzumi), contains two prenylated chalcones, 4-hydroxyderricin and xanthoangelol, which are considered to be the major active compounds of Ashitaba. However, their effects on inflammatory responses are poorly understood. In the present study, we investigated the effects and underlying molecular mechanisms of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264 mouse macrophages. LPS-mediated production of nitric oxide (NO) was markedly reduced by 4-hydroxyderricin (10 μM) and xanthoangelol (5 μM) compared with their parent compound, chalcone (25 μM). They also inhibited LPS-induced secretion of tumor necrosis factor-alpha (TNF-α) and expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Although chalcone decreased the DNA-binding activity of both activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB), 4-hydroxyderricin and xanthoangelol suppressed only AP-1 and had no effect on NF-κB. On the other hand, all of the tested chalcones reduced the phosphorylation (at serine 536) level of the p65 subunit of NF-κB. 4-Hydroxyderricin and xanthoangelol may be promising for the prevention of inflammatory diseases. Topics: Angelica; Animals; Cell Line; Chalcone; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Gene Expression; Inflammation; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Transcription Factor AP-1; Tumor Necrosis Factor-alpha | 2014 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |