4-hydroxychalcone and Inflammation

4-hydroxychalcone has been researched along with Inflammation* in 3 studies

Other Studies

3 other study(ies) available for 4-hydroxychalcone and Inflammation

ArticleYear
4-Hydroxychalcone attenuates hyperaldosteronism, inflammation, and renal injury in cryptochrome-null mice.
    BioMed research international, 2014, Volume: 2014

    In the present study, we aimed to investigate the preventive effects of 4-hydroxychalcone (4HCH) on resistant hypertension. We used cryptochrome-null mice, which characteristically show high plasma aldosterone levels, inflammation, and renal injury. The cryptochrome-null mice received high-salt treatment and were treated orally with 4HCH 10 mg/kg, 4HCH 20 mg/kg, and 4HCH 40 mg/kg, respectively. The salt administration in cryptochrome-null mice is able to induce an increase in systolic pressure which is associated with hyperaldosteronism, inflammation, and kidney injury. Treatment with 40 mg/kg 4HCH reduced systolic hypertension, serum IL-1β, and TNF-α levels and suppressed the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and renal injury. The impact of 4HCH on the hyperaldosteronism, inflammation, and kidney injury provides new insights for future development of therapeutic strategies in resistant hypertension.

    Topics: Aldosterone; Animals; Blood Pressure; Chalcones; Cryptochromes; Hyperaldosteronism; Inflammation; Interleukin-1beta; Kidney; Mice, Knockout; NF-kappa B; Systole; Tumor Necrosis Factor-alpha

2014
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Current protocols in cytometry, 2010, Volume: Chapter 13

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening.

    Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature

2010
Small neutralizing molecules to inhibit actions of the chemokine CXCL12.
    The Journal of biological chemistry, 2008, Aug-22, Volume: 283, Issue:34

    The chemokine CXCL12 and the receptor CXCR4 play pivotal roles in normal vascular and neuronal development, in inflammatory responses, and in infectious diseases and cancer. For instance, CXCL12 has been shown to mediate human immunodeficiency virus-induced neurotoxicity, proliferative retinopathy and chronic inflammation, whereas its receptor CXCR4 is involved in human immunodeficiency virus infection, cancer metastasis and in the rare disease known as the warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis (WHIM) syndrome. As we screened chemical libraries to find inhibitors of the interaction between CXCL12 and the receptor CXCR4, we identified synthetic compounds from the family of chalcones that reduce binding of CXCL12 to CXCR4, inhibit calcium responses mediated by the receptor, and prevent CXCR4 internalization in response to CXCL12. We found that the chemical compounds display an original mechanism of action as they bind to the chemokine but not to CXCR4. The highest affinity molecule blocked chemotaxis of human peripheral blood lymphocytes ex vivo. It was also active in vivo in a mouse model of allergic eosinophilic airway inflammation in which we detected inhibition of the inflammatory infiltrate. The compound showed selectivity for CXCL12 and not for CCL5 and CXCL8 chemokines and blocked CXCL12 binding to its second receptor, CXCR7. By analogy to the effect of neutralizing antibodies, this molecule behaves as a small organic neutralizing compound that may prove to have valuable pharmacological and therapeutic potential.

    Topics: Calcium; Calorimetry; Cell Line; Cell Proliferation; Chalcones; Chemokine CCL5; Chemokine CXCL12; Gene Expression Regulation; Humans; Inflammation; Ligands; Protein Binding; Receptors, CXCR; Receptors, CXCR4; Spectrometry, Fluorescence

2008