4-hydroxy-2-nonenal and Teratocarcinoma

4-hydroxy-2-nonenal has been researched along with Teratocarcinoma* in 4 studies

Other Studies

4 other study(ies) available for 4-hydroxy-2-nonenal and Teratocarcinoma

ArticleYear
Interference with ubiquitination causes oxidative damage and increased protein nitration: implications for neurodegenerative diseases.
    Journal of neurochemistry, 2004, Volume: 90, Issue:2

    Inhibition of the proteasomal pathway for degrading abnormal proteins leads to protein aggregation, increased oxidative damage and increased protein nitration. We now show that interference with polyubiquitination has similar consequences. Expression of a dominant-negative mutant form of ubiquitin (K48R) in NT-2 and SK-N-MC cells caused decreased cell growth rates and increased oxidative damage (protein carbonyls and lipid peroxidation), nitric oxide production and elevated protein nitration. It also rendered cells highly sensitive to 4-hydroxy-2,3-trans-nonenal, a neurotoxic end-product of lipid peroxidation, hydrogen peroxide and deprivation of growth factors. Overexpression of wild-type ubiquitin did not produce these effects. Our data show that interference with the ubiquitin-proteasome pathway at a different point and by a different mechanism can produce many of the common features of human neurodegenerative diseases, such as increased lipid peroxidation, protein oxidation and protein nitration. We suggest that defects in this pathway at multiple points could produce the common features of neurodegenerative diseases, and that more such defects remain to be discovered.

    Topics: Aldehydes; Antioxidants; Cell Division; Cell Line; Cell Survival; Clone Cells; Cysteine Endopeptidases; Enzyme Inhibitors; Genes, Dominant; Glutathione; Green Fluorescent Proteins; Humans; Luminescent Proteins; Multienzyme Complexes; Mutation; Neuroblastoma; Neurodegenerative Diseases; Nitrates; Nitrites; Oxidants; Oxidative Stress; Proteasome Endopeptidase Complex; Proteins; Recombinant Fusion Proteins; Teratocarcinoma; Transfection; Ubiquitins

2004
Proteasomal dysfunction induced by 4-hydroxy-2,3-trans-nonenal, an end-product of lipid peroxidation: a mechanism contributing to neurodegeneration?
    Journal of neurochemistry, 2002, Volume: 83, Issue:2

    4-Hydroxy-2,3-trans-nonenal (HNE) is a neurotoxic unsaturated aldehyde end-product of lipid peroxidation. The addition of HNE to NT-2 and SK-N-MC cell lines induces apoptosis and we now investigated the time-course of events occurring prior to apoptosis. Treatment of both NT-2 and SK-N-MC cell lines with HNE led to HNE association with the proteasome, increased levels of protein carbonyls and ubiquitinated proteins, and decreased proteasomal function. There was also decreased metabolic activity, cytochrome c release and activation of caspase 3, followed by apoptotic changes including chromatin condensation, cell shrinkage and DNA fragmentation and laddering. Overexpression of mutant superoxide dismutase 1 proteins associated with amyotrophic lateral sclerosis decreased proteasomal activities in the absence of HNE and accelerated the apoptosis induced by HNE. By contrast, overexpression of wild-type superoxide dismutase 1 did not affect basal levels of proteasomal activity. The data suggest that accumulation of ubiquitinated proteins and impairment of proteasomal function are important events in HNE toxicity. We propose that the proteasomal system is a significant target of HNE neurotoxicity in a wide range of neurodegenerative diseases, especially if abnormal proteins are being expressed.

    Topics: Aldehydes; Apoptosis; Caspase 3; Caspases; Cell Membrane; Cell Survival; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Cytochrome c Group; Dose-Response Relationship, Drug; Enzyme Activation; Humans; Lipid Peroxidation; Multienzyme Complexes; Mutation; Neuroblastoma; Neurodegenerative Diseases; Proteasome Endopeptidase Complex; Superoxide Dismutase; Teratocarcinoma; Tumor Cells, Cultured; Ubiquitin

2002
Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult.
    Journal of neurochemistry, 2001, Volume: 76, Issue:4

    Mutations in alpha-synuclein (A30P and A53T) are involved in some cases of familial Parkinson's disease (FPD), but it is not known how they result in nigral cell death. We examined the effect of alpha-synuclein overexpression on the response of cells to various insults. Wild-type alpha-synuclein and alpha-synuclein mutations associated with FPD were overexpressed in NT-2/D1 and SK-N-MC cells. Overexpression of wild-type alpha-synuclein delayed cell death induced by serum withdrawal or H(2)O(2), but did not delay cell death induced by 1-methyl-4-phenylpyridinium ion (MPP(+)). By contrast, wild-type alpha-synuclein transfectants were sensitive to viability loss induced by staurosporine, lactacystin or 4-hydroxy-2-trans-nonenal (HNE). Decreases in glutathione (GSH) levels were attenuated by wild-type alpha-synuclein after serum deprivation, but were aggravated following lactacystin or staurosporine treatment. Mutant alpha-synucleins increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation and 3-nitrotyrosine, and markedly accelerated cell death in response to all the insults examined. The decrease in GSH levels was enhanced in mutant alpha-synuclein transfectants. The loss of viability induced by toxic insults was by apoptosic mechanism. The presence of abnormal alpha-synucleins in substantia nigra in PD may increase neuronal vulnerability to a range of toxic agents.

    Topics: 1-Methyl-4-phenylpyridinium; Aldehydes; alpha-Synuclein; Cell Division; Cell Line; Cell Survival; Clone Cells; Culture Media, Serum-Free; Enzyme Inhibitors; Gene Expression; Glutathione; Guanine; Humans; Hydrogen Peroxide; Ketones; Lipid Peroxidation; Mitochondria; Mutation; Nerve Tissue Proteins; Neuroblastoma; Oxidants; Oxidative Stress; Parkinsonian Disorders; Synucleins; Teratocarcinoma; Transfection; Tyrosine

2001
Effect of overexpression of wild-type and mutant Cu/Zn-superoxide dismutases on oxidative stress and cell death induced by hydrogen peroxide, 4-hydroxynonenal or serum deprivation: potentiation of injury by ALS-related mutant superoxide dismutases and pro
    Journal of neurochemistry, 2001, Volume: 78, Issue:2

    Mutations in Cu/Zn-superoxide dismutase (SOD1) are associated with some cases of familial amyotrophic lateral sclerosis (ALS). We overexpressed Bcl-2, wild-type SOD1 or mutant SOD1s (G37R and G85R) in NT-2 and SK-N-MC cells. Overexpression of Bcl-2 rendered cells more resistant to apoptosis induced by serum withdrawal, H2O2 or 4-hydroxy-2-trans-nonenal (HNE). Overexpression of Bcl-2 had little effect on levels of protein carbonyls, lipid peroxidation, 8-hydroxyguanine (8-OHG) or 3-nitrotyrosine. Serum withdrawal or H2O2 raised levels of protein carbonyls, lipid peroxidation, 8-OHG and 3-nitrotyrosine, changes that were attenuated in cells overexpressing Bcl-2. Overexpression of either SOD1 mutant tended to increase levels of lipid peroxidation, protein carbonyls, and 3-nitrotyrosine and accelerated viability loss induced by serum withdrawal, H2O2 or HNE, accompanied by greater rises in oxidative damage parameters. The effects of mutant SOD1s were attenuated by Bcl-2. By contrast, expression of wild-type SOD1 rendered cells more resistant to loss of viability induced by serum deprivation, HNE or H2O2. The levels of lipid peroxidation in wild-type SOD1 transfectants were elevated. Overexpression of mutant SOD1s makes cells more predisposed to undergo apoptosis in response to several insults. Our cellular systems appear to mimic events in patients with ALS or transgenic mice overexpressing mutant SOD1.

    Topics: Aldehydes; Amino Acid Substitution; Cell Death; Cell Survival; Cross-Linking Reagents; Culture Media, Serum-Free; Genes, bcl-2; Guanine; Humans; Hydrogen Peroxide; Kinetics; Lipid Peroxidation; Motor Neuron Disease; Mutagenesis, Site-Directed; Neuroblastoma; Oxidative Stress; Proto-Oncogene Proteins c-bcl-2; Recombinant Proteins; Superoxide Dismutase; Superoxide Dismutase-1; Teratocarcinoma; Tumor Cells, Cultured; Tyrosine

2001