4-hydroxy-2-nonenal has been researched along with Otosclerosis* in 2 studies
2 other study(ies) available for 4-hydroxy-2-nonenal and Otosclerosis
Article | Year |
---|---|
The lack of 4-hydroxynonenal in otosclerotic bone tissue in Ethiopian population.
In Ethiopians, like in other Africans, the incidence of otosclerosis is lower than in Western and Asian populations. Unfortunately, due to the lack of available otorhinolaryngology specialists many patients are not treated and suffer the progression of the disease and severe hearing loss. This program of the Global ENT Outreach Organization (GEO) together with the Ethiopian partners was done to help some of these patients and in parallel to evaluate the presence of the oxidative stress bioactive marker 4-hydroxynonenal (HNE), which is known as major lipid peroxidation product and the second messenger of free radicals, in the otosclerotic bone specimens. Namely, we described recently that as HNE acts as a bone growth regulator associated with pathogenesis of otosclerosis. The prospective study conducted at the ENT Department of the Migbare Senay General Hospital, Addis Ababa, Ethiopia in June 2012, under the auspices of the Global ENT Outreach Organization, USA. Altogether 36 patients (male = 12, female = 24) underwent surgery due to the previous otosclerosis diagnosis based on the clinical and audiometric findings. The bone samples were harvested from patients with intraoperatively confirmed otosclerosis diagnosis. Immunohistochemistry for HNE-modified proteins was carried out on formalin-fixed paraffin-embedded specimens. The presence of HNE was found in almost all bone samples analyzed, without particular difference in the HNE distribution pattern between the otosclerotic and respective control bone specimens. Although there was no significant association between the HNE appearance and otosclerotic bone outgrowth observed, several cases have shown tendency of higher HNE expression in patients with more severe hearing loss. The results of the present study are in contrast with our previous findings obtained on European patients most likely due to the differences between studied population groups. Topics: Adult; Aldehydes; Bone and Bones; Ethiopia; Female; Humans; Incidence; Lipid Peroxidation; Male; Middle Aged; Otosclerosis; Oxidative Stress; Prospective Studies; Young Adult | 2015 |
The effects of angiotensin II and the oxidative stress mediator 4-hydroxynonenal on human osteoblast-like cell growth: possible relevance to otosclerosis.
Otosclerosis is a complex disease characterized by an abnormal bone turnover of the otic capsule resulting in conductive hearing loss. Recent findings have shown that angiotensin II (Ang II), a major effector peptide of the renin-angiotensin system, plays an important role in the pathophysiology of otosclerosis, most likely by its proinflammatory effects on the bone cells. Because reactive oxygen species play a role both in inflammation and in the cellular signaling pathway of Ang II, the appearance of protein adducts of the "second messenger of free radicals," the aldehyde 4-hydroxynonenal (HNE), in otosclerotic bone has been analyzed. Immunohistochemical analysis of HNE-modified proteins in tissue samples of the stapedial bones performed on 15 otosclerotic patients and 6 controls revealed regular HNE-protein adducts present in the subperiosteal parts of control bone specimens, whereas irregular areas of a pronounced HNE-protein adduct presence were found within stapedial bone in cases of otosclerosis. To study possible interference by HNE and Ang II in human bone cell proliferation, differentiation, and induction of apoptosis we used an in vitro model of osteoblast-like cells. HNE interacted with Ang II in a dose-dependent manner, both by forming HNE-Ang II adducts, as revealed by immunoblotting, and by modifying its effects on cultured cells. Namely, treatment with 0.1 nM Ang II and 2.5 μM HNE stimulated proliferation, whereas treatment with 10 μM HNE or in combination with Ang II (0.1, 0.5, and 1 nM) decreased cell proliferation. Moreover, 10 μM HNE alone and with Ang II (except if 1 nM Ang II was used) increased cellular differentiation and apoptosis. HNE at 5 μM did not affect differentiation nor significantly change apoptosis. On the other hand, when cells were treated with lower concentrations of HNE and Ang II we observed a decrease in cellular differentiation (combination of 1.0 or 2.5 μM HNE with 0.1 nM Ang II) and decrease in apoptosis (0.1 and 0.5 nM Ang II). Cellular necrosis was increased with 5 and 10 μM HNE if given alone or combined with Ang II, whereas 0.5 nM Ang II and combination of 1 μ M HNE with Ang II (0.1 and 0.5 nM) reduced necrosis. These results indicate that HNE and Ang II might act mutually dependently in the regulation of bone cell growth and in the pathophysiology of otosclerosis. Topics: Aldehydes; Angiotensin II; Apoptosis; Bone and Bones; Cell Differentiation; Cell Proliferation; Cells, Cultured; Cysteine Proteinase Inhibitors; Humans; Osteoblasts; Otosclerosis; Oxidative Stress; Reactive Oxygen Species; Signal Transduction | 2013 |