4-hydroxy-2-nonenal and Nephritis

4-hydroxy-2-nonenal has been researched along with Nephritis* in 4 studies

Other Studies

4 other study(ies) available for 4-hydroxy-2-nonenal and Nephritis

ArticleYear
Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2013, Volume: 62

    The aim of this study was to investigate the therapeutic activity of isoquinoline alkaloid berberine against cisplatin (CP)-induced nephrotoxicity in mice. Berberine was administered at daily doses of 1, 2 and 3 mg/kg by gavage for two successive days, 48 h after intraperitoneal CP injection (13 mg/kg). Mice were sacrificed 24 h after the last dose of berberine. Histopathological changes and the increase in serum creatinine and blood urea nitrogen (BUN) induced by CP were significantly ameliorated by berberine in a dose-dependent manner. Additionally, oxidative/nitrosative stress, evidenced by the increase in renal 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), cytochrome P450 E1 (CYP2E1) and heme oxygenase (HO-1) expression, was significantly reduced. The expression of nuclear factor-kappaB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) was markedly suppressed by berberine, indicating the inhibition of inflammatory response. Treatment of CP-intoxicated animals with berberine also significantly reduced the expression of p53, active caspase-3 as well as autophagy marker light chain 3B (LC3B) in the kidneys. The results of the current study showed the nephroprotective activity of berberine against CP-induced renal injury, which could be attributed to the inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis.

    Topics: Aldehydes; Animals; Apoptosis; Autophagy; Berberine; Blood Urea Nitrogen; Cisplatin; Creatinine; Cytochrome P-450 CYP2E1; Kidney; Male; Mice; Mice, Inbred BALB C; Nephritis; Oxidative Stress; Protective Agents; Tyrosine

2013
Loss of GSTM1, a NRF2 target, is associated with accelerated progression of hypertensive kidney disease in the African American Study of Kidney Disease (AASK).
    American journal of physiology. Renal physiology, 2013, Feb-15, Volume: 304, Issue:4

    Oxidative stress is acknowledged to play a role in kidney disease progression. Genetic variants that affect the capacity to handle oxidative stress may therefore influence the outcome of kidney disease. We examined whether genetic variants of the GSTM1 gene, a member of a superfamily of glutathione S-transferases, influence the course of kidney disease progression in participants of the African American Study of Kidney Disease (AASK) trial. Groups with and without the common GSTM1 null allele, GSTM1(0), differed significantly in the time to a glomerular filtration rate (GFR) event or dialysis (P = 0.04) and in the time to GFR event, dialysis, or death (P = 0.02). The hazard ratios (HR) for the time to a GFR event or dialysis in those with two or one null allele relative to those possessing none were 1.88 [95% confidence interval (CI), 1.07 to 3.30, P = 0.03] and 1.68 (95% CI, 1.00 to 2.84, P < 0.05), respectively. For the time to GFR event, dialysis, or death, the HR for two null alleles was 2.06 (95% CI, 1.20 to 3.55, P = 0.01) and for one null allele 1.70 (95% CI, 1.02 to 2.81, P = 0.04). We demonstrated that GSTM1 directly regulates intracellular levels of 4-hydroxynonenal (4-HNE) in vascular smooth muscle cells. Furthermore, we showed that renal 4-HNE levels and GSTM1 are both increased after reduction of renal mass (RRM) in the mouse. We conclude that GSTM1 is normally upregulated in chronic kidney disease (CKD) in a protective response to increased oxidative stress. A genetic variant that results in loss of GSTM1 activity may be deleterious in CKD.

    Topics: Aldehydes; Animals; Black People; Cells, Cultured; Disease Progression; Female; Gene Silencing; Glomerular Filtration Rate; Glutathione Transferase; Humans; Hypertension, Renal; Male; Mice; Mice, Inbred C57BL; Middle Aged; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nephritis; NF-E2-Related Factor 2; Oxidative Stress; Randomized Controlled Trials as Topic; Renal Insufficiency, Chronic

2013
Hepatotoxicity and nephrotoxicity produced by 4-hydroxy-2-nonenal (4-HNE) following 4-week oral administration to Sprague-Dawley rats.
    Journal of toxicology and environmental health. Part A, 2011, Volume: 74, Issue:12

    4-Hydroxy-2-nonenal (4-HNE) is a major end product of lipid peroxidation of membrane n-6 polyunsaturated fatty acids, which are found in food products. In order to examine the toxicity attributed to 4-HNE, a subacute toxicity study was conducted in Sprague-Dawley (SD) rats. For this study, 4 groups of 10 male and 10 female rats were administered by gavage either 0 (control), 0.5, 2.5, or 12.5 mg 4-HNE/kg body weight/d for 28 d, and then sacrificed for blood and tissue sampling. No significant changes in body weight or clinical signs were observed, but biochemical analysis showed significant alterations in hepatotoxicity biomarkers, such as levels of serum albumin and total bilirubin, and aspartate aminotransferase (AST) activity, and in nephrotoxicity biomarkers, such as levels of blood urea nitrogen (BUN) and creatinine and activity of alkaline phosphatase (ALP), and urinary creatinine and protein levels at 0.5 mg/kg/d. In addition, significant increases in kidney and brain weights and a significant decrease in small intestine weight were noted at 12.5 mg/kg/d. Histologic examinations of kidneys showed hyaline droplets or accumulation of hyaline bodies in renal tubules and degeneration of tubular epithelium cells. These results demonstrate that oral daily exposure to 4-HNE for 28 d produced hepatotoxicity and nephrotoxicity. The no-observed-adverse-effect level (NOAEL) for 4-HNE was calculated to be <0.5 mg 4-HNE/kg/d.

    Topics: Administration, Oral; Aldehydes; Animals; Biomarkers; Body Weight; Chemical and Drug Induced Liver Injury; Female; Hepatocytes; Male; Nephritis; Rats; Rats, Sprague-Dawley; Time Factors

2011
Attenuation of diabetes-induced renal dysfunction by multiple exposures to low-dose radiation is associated with the suppression of systemic and renal inflammation.
    American journal of physiology. Endocrinology and metabolism, 2009, Volume: 297, Issue:6

    Renal protection against diabetes-induced pathogenic injuries by multiple exposures to low-dose radiation (LDR) was investigated to develop a novel approach to the prevention of renal disease for diabetic subjects. C57BL/6J mice were given multiple low-dose streptozotocin (STZ; 6 x 60 [corrected] mg/kg) to produce a type 1 diabetes. Two weeks after diabetes onset, some of diabetic mice and age-matched nondiabetic mice were exposed whole body to 25 mGy X-rays every other day for 2, 4, 8, 12, and 16 wk. Diabetes caused a significant renal dysfunction, shown by time-dependent increase in urinary microalbumin (Malb) and decrease in urinary creatinine (Cre), and pathological changes, shown by significant increases in renal structural changes and PAS-positive staining. However, diabetes-induced renal dysfunction and pathological changes were significantly, albeit partially, attenuated by multiple exposures to LDR. Furthermore, LDR protection against diabetes-induced renal dysfunction and pathological changes was associated with a significant suppression of diabetes-increased systemic and renal inflammation, shown by significant increases in serum and renal TNFalpha, ICAM-1, IL-18, MCP-1, and PAI-1 contents. To further explore the mechanism by which LDR prevents diabetes-induced renal pathological changes, renal oxidative damage was examined by Western blotting and immunohistochemical staining for 3-nitrotyrosine and 4-hydroxynonenal. Significant increase in oxidative damage was observed in diabetic mice, but not diabetic mice, with LDR. Renal fibrosis, examined by Western blotting of connective tissue growth factor and Masson's trichrome staining, was also evident in the kidneys of diabetic mice but not diabetic mice with LDR. These results suggest that multiple exposures to LDR significantly suppress diabetes-induced systemic and renal inflammatory response and renal oxidative damage, resulting in a prevention of the renal dysfunction and fibrosis.

    Topics: Albuminuria; Aldehydes; Animals; Blotting, Western; Chemokine CCL2; Creatinine; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Retinopathy; Intercellular Adhesion Molecule-1; Interleukin-18; Male; Mice; Mice, Inbred C57BL; Nephritis; Random Allocation; Reverse Transcriptase Polymerase Chain Reaction; RNA; Serpin E2; Serpins; Tumor Necrosis Factor-alpha; Tyrosine

2009