4-hydroxy-2-nonenal has been researched along with Malaria--Falciparum* in 4 studies
2 trial(s) available for 4-hydroxy-2-nonenal and Malaria--Falciparum
Article | Year |
---|---|
Blood oxidative stress markers and Plasmodium falciparum malaria in non-immune African children.
Converging in vitro evidence and clinical data indicate that oxidative stress may play important roles in Plasmodium falciparum malaria, notably in the pathogenesis of severe anaemia. However, oxidative modifications of the red blood cell (RBC)-membrane by 4-hydroxynonenal (4-HNE) and haemoglobin-binding, previously hypothesized to contribute mechanistically to the pathogenesis of clinical malaria, have not yet been tested for clinical significance. In 349 non-immune Mozambican newborns recruited in a double-blind placebo-controlled chemoprophylaxis trial, oxidative markers including 4-HNE-conjugates and membrane-bound haemoglobin were longitudinally assessed from 2·5 to 24 months of age, at first acute malaria episode and in convalescence. During acute malaria, 4-HNE-conjugates were shown to increase significantly in parasitized and non-parasitized RBCs. In parallel, advanced oxidation protein products (AOPP) rose in plasma. 4-HNE-conjugates correlated with AOPP and established plasma but not with RBC oxidative markers. High individual levels of 4-HNE-conjugates were predictive for increased malaria incidence rates in children until 2 years of life and elevated 4-HNE-conjugates in convalescence accompanied sustained anaemia after a malaria episode, indicating 4-HNE-conjugates as a novel patho-mechanistic factor in malaria. A second oxidative marker, haemoglobin binding to RBC-membranes, hypothesized to induce clearing of RBCs from circulation, was predictive for lower malaria incidence rates. Further studies will show whether or not higher membrane-haemoglobin values at the first malaria episode may provide protection against malaria. Topics: Aldehydes; Anemia; Antigens, Protozoan; Antimalarials; Artemisinins; Biomarkers; Child, Preschool; Double-Blind Method; Endemic Diseases; Erythrocytes; Humans; Infant; Malaria, Falciparum; Mozambique; Oxidative Stress; Pyrimethamine; Sulfadoxine | 2014 |
Transfer of 4-hydroxynonenal from parasitized to non-parasitized erythrocytes in rosettes. Proposed role in severe malaria anemia.
Severe anaemia is a life-threatening complication of falciparum malaria associated with loss of predominantly non-parasitized red blood cells (npRBCs). This poorly elucidated process might be influenced by (i) rosettes, i.e. npRBCs cytoadherent to haemozoin-containing parasitized RBCs (pRBCs) and (ii) generation in pRBCs of 4-hydroxynonenal (4-HNE) through haemozoin-catalysed lipid peroxidation. We explored whether close proximity in rosettes may facilitate 4-HNE transfer to npRBCs, which is likely to enhance their phagocytosis and contribute to malaria anaemia. Fluorescence microscopy and flow cytometry data indicated 4-HNE transfer to npRBCs in rosettes. Rosettes were formed by 64·8 ± 1·8% varO-expressing pRBCs, and 8·7 ± 1·1% npRBCs were positive for 4-HNE-protein-conjugates, while low-rosetting parasites generated only 2·4 ± 1·1% 4-HNE-conjugate-positive npRBCs. 4-HNE transfer decreased after blocking rosetting by monoclonal antibodies. A positive linear relationship between rosette frequency and 4-HNE-conjugates in npRBCs was found in 40 malaria patients, a first indication for a role of rosetting in npRBCs modifications in vivo. Children with severe malaria anaemia had significantly higher percentages of 4-HNE-conjugate-positive npRBCs compared to children with uncomplicated malaria. In conclusion, 4-HNE transfer from pRBCs to npRBCs in rosettes is suggested to play a role in the phagocytic removal of large numbers of npRBCs, the hallmark of severe malaria anaemia. Topics: Aldehydes; Anemia; Biological Transport; Cell Line; Child; Child, Preschool; Erythrocytes; Female; Hemeproteins; Humans; Infant; Lipid Peroxidation; Malaria, Falciparum; Male; Plasmodium falciparum | 2012 |
2 other study(ies) available for 4-hydroxy-2-nonenal and Malaria--Falciparum
Article | Year |
---|---|
Malarial pigment hemozoin impairs chemotactic motility and transendothelial migration of monocytes via 4-hydroxynonenal.
Natural hemozoin, nHZ, is avidly phagocytosed in vivo and in vitro by human monocytes. The persistence of the undigested β-hematin core of nHZ in the phagocyte lysosome for long periods of time modifies several cellular immune functions. Here we show that nHZ phagocytosis by human primary monocytes severely impaired their chemotactic motility toward MCP-1, TNF, and FMLP, by approximately 80% each, and their diapedesis across a confluent human umbilical vein endothelial cell layer toward MCP-1 by 45±5%. No inhibition was observed with latex-fed or unfed monocytes. Microscopic inspection revealed polarization defects in nHZ-fed monocytes due to irregular actin polymerization. Phagocytosed nHZ catalyzes the peroxidation of polyunsaturated fatty acids and generation of the highly reactive derivative 4-hydroxynonenal (4-HNE). Similar to nHZ phagocytosis, the exposure of monocytes to in vivo-compatible 4-HNE concentrations inhibited cell motility in both the presence and the absence of chemotactic stimuli, suggesting severe impairment of cytoskeleton dynamics. Consequently, 4-HNE conjugates with the cytoskeleton proteins β-actin and coronin-1A were immunochemically identified in nHZ-fed monocytes and mass spectrometrically localized in domains of protein-protein interactions involved in cytoskeleton reorganization and cell motility. The molecular and functional modifications of actin and coronin by nHZ/4-HNE may also explain impaired phagocytosis, another motility-dependent process previously described in nHZ-fed monocytes. Further studies will show whether impaired monocyte motility may contribute to the immunodepression and the frequent occurrence of secondary infections observed in malaria patients. Topics: Actins; Aldehydes; Cell Migration Inhibition; Cells, Cultured; Chemokine CCL2; Chemotaxis; Cytoskeleton; Hemeproteins; Human Umbilical Vein Endothelial Cells; Humans; Leukocytes, Mononuclear; Malaria, Falciparum; Microfilament Proteins; N-Formylmethionine Leucyl-Phenylalanine; Phagocytosis; Pigments, Biological; Plasmodium falciparum; Transendothelial and Transepithelial Migration; Tumor Necrosis Factor-alpha | 2014 |
Differential carbonylation of cytoskeletal proteins in blood group O erythrocytes: potential role in protection against severe malaria.
The molecular basis for the prevalence of blood group O in regions where malaria is endemic remains unclear. In some genetic backgrounds oxidative modifications have been linked to a reduced susceptibility to severe malaria disease. Through redox proteomics, we detected differences in carbonylated membrane proteins among the different blood groups, both in Plasmodium-infected and uninfected erythrocytes (RBC). Carbonylation profiles of RBC membrane proteins revealed that group O blood shows a reduced protein oxidation pattern compared to groups A, B and AB. Upon infection with Plasmodium falciparum Dd2, erythrocytes of all blood groups showed increased oxidation of membrane proteins. By examining 4-hydroxy-2-nonenal (4-HNE) modified proteins by LC-MS/MS (liquid chromatography/mass spectrometry) we observed that, upon malaria infection, the protein components of lipid rafts and cytoskeleton were the main targets of 4-HNE carbonylation in all blood groups. Ankyrins and protein bands 4.2 and 4.1 were differentially carbonylated in group O as compared to A and B groups. During trophozoite maturation in group O erythrocytes, a steady increase was observed in the number of 4-HNE-modified proteins, suggesting a parasite-driven 4-HNE-carbonylation process. Our findings indicate a possible correlation between the protection against severe malaria in blood group O individuals and a specific pattern of 4-HNE-carbonylation of cytoskeleton proteins. Topics: ABO Blood-Group System; Aldehydes; Case-Control Studies; Cytoskeletal Proteins; Erythrocytes; Genetic Predisposition to Disease; Humans; Malaria, Falciparum; Membrane Proteins; Oxidation-Reduction; Plasmodium falciparum; Protein Carbonylation; Proteomics | 2012 |