4-hydroxy-2-nonenal and Inflammatory-Bowel-Diseases

4-hydroxy-2-nonenal has been researched along with Inflammatory-Bowel-Diseases* in 6 studies

Reviews

3 review(s) available for 4-hydroxy-2-nonenal and Inflammatory-Bowel-Diseases

ArticleYear
4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer.
    Free radical biology & medicine, 2017, Volume: 111

    4-hydroxy-2-nonenal (HNE) is an amazing reactive compound, originating from lipid peroxidation within cells but also in food and considered as a "second messenger" of oxidative stress. Due to its chemical features, HNE is able to make covalent links with DNA, proteins and lipids. The aim of this review is to give a comprehensive summary of the chemical properties of HNE and of the consequences of its reactivity in relation to cancer development. The formation of exocyclic etheno-and propano-adducts and genotoxic effects are addressed. The adduction to cellular proteins and the repercussions on the regulation of cell signaling pathways involved in cancer development are reviewed, notably on the Nrf2/Keap1/ARE pathway. The metabolic pathways leading to the inactivation/elimination or, on the contrary, to the bioactivation of HNE are considered. A special focus is given on the link between HNE and colorectal cancer development, due to its occurrence in foodstuffs and in the digestive lumen, during digestion.

    Topics: Aldehydes; Carcinogenesis; Colon; Colorectal Neoplasms; DNA Adducts; Gene Expression Regulation, Neoplastic; Humans; Inflammatory Bowel Diseases; Kelch-Like ECH-Associated Protein 1; Mitogen-Activated Protein Kinases; NF-E2-Related Factor 2; Oxidation-Reduction; Oxidative Stress; Precancerous Conditions; Protein Kinase C; Signal Transduction

2017
HNE and cholesterol oxidation products in colorectal inflammation and carcinogenesis.
    Free radical biology & medicine, 2017, Volume: 111

    Consistent experimental data suggest the importance of inflammation-associated oxidative stress in colorectal cancer (CRC) pathogenesis. Inflammatory bowel disease with chronic intestinal inflammation is now considered a precancerous condition. Oxidative stress is an essential feature of inflammation. Activation of redox-sensitive pro-inflammatory cell signals and inflammatory mediators concur to establish a pro-tumoral environment. In this frame, lipid oxidation products, namely 4-hydroxynonenal and oxysterols, can be produced in big quantity so as to be able to exert their function as inducers of cell signaling pathways of proliferation and survival. Notably, an important source of these two compounds is represented by a high fat diet, which is undoubtedly a risk factor for inflammation and CRC development. Current evidence for the emerging implication of these two oxidized lipids in inflammation and CRC development is discussed in this review.

    Topics: Aldehydes; Carcinogenesis; Cholesterol; Colon; Colorectal Neoplasms; Diet, High-Fat; Gene Expression Regulation, Neoplastic; Humans; Inflammation; Inflammatory Bowel Diseases; NF-kappa B; Oxidation-Reduction; Oxidative Stress; Oxysterols; Risk Factors; Signal Transduction; STAT3 Transcription Factor

2017
4-Hydroxynonenal in the pathogenesis and progression of human diseases.
    Current medicinal chemistry, 2014, Volume: 21, Issue:2

    Metastable aldehydes produced by lipid peroxidation act as 'toxic second messengers' that extend the injurious potential of free radicals. 4-hydroxy 2-nonenal (HNE), a highly toxic and most abundant stable end product of lipid peroxidation, has been implicated in the tissue damage, dysfunction, injury associated with aging and other pathological states such as cancer, Alzheimer, diabetes, cardiovascular and inflammatory complications. Further, HNE has been considered as a oxidative stress marker and it act as a secondary signaling molecule to regulates a number of cell signaling pathways. Biological activity of HNE depends on its intracellular concentration, which can differentially modulate cell death, growth and differentiation. Therefore, the mechanisms responsible for maintaining the intracellular levels of HNE are most important, not only in the defense against oxidative stress but also in the pathophysiology of a number of disease processes. In this review, we discussed the significance of HNE in mediating various disease processes and how regulation of its metabolism could be therapeutically effective.

    Topics: Aldehydes; Alzheimer Disease; Cardiovascular Diseases; Diabetes Mellitus; Disease Progression; Humans; Inflammatory Bowel Diseases; Lipid Peroxidation; Molecular Structure; Neoplasms

2014

Other Studies

3 other study(ies) available for 4-hydroxy-2-nonenal and Inflammatory-Bowel-Diseases

ArticleYear
Methylamine dichloramine may play a role in the process of colorectal disease through architectural and oxidative changes in crypts in mice.
    Life sciences, 2009, Jun-19, Volume: 84, Issue:25-26

    Methylamine dichloramine (CH(3)NCl(2)) produced by neutrophils may promote colon tumors and colitis via architectural and oxidative changes in crypts, which are secretory granulae composed of goblet cells located in the colorectal mucosal layer. We investigated whether CH(3)NCl(2), in comparison with the other reactive oxygen species (ROS) such as H(2)O(2) and HOCl, derived from primed neutrophils in inflammatory sites in the large intestine, is a biogenic factor for the induction of colorectal disease in mice.. Male ICR-strain mice were administered each oxidant (0.5-0.7 micromol/mouse) by enema under anesthesia. The colorectal tissues were evaluated by histopathological and immunohistochemical analyses. Hemolysis and hemoglobin oxidation by the methylamine chloramines and HOCl were examined by adding them (50-400 microM) to a sheep erythrocyte suspension (1x10(8) cells/ml) and its lysate at pH 7 and 37 degrees C.. CH(3)NCl(2) oxidized erythrocyte hemoglobin more effectively than HOCl, indicating it has high cell permeability and selective oxidation ability. CH(3)NCl(2) mainly induced atrophy of crypts at 6 h after administration, while the other ROS tested did not. Furthermore, 4-hydroxy-2-nonenal (4-HNE) showed positive immunostains throughout the mucosal layer, including around the basal regions of atrophied crypts, only with CH(3)NCl(2), while positive immunostains were observed for 3-nitrotyrosine (3-NT) in the atrophied crypts and their surrounding lamina propria in the mucosal layer.. The results suggest that CH(3)NCl(2)derived from primed neutrophils may play the most important role in promoting the development of colon tumor formation and colitis by oxidative stress through its high degree of cell permeability.

    Topics: Aldehydes; Animals; Chloramines; Colon; Colonic Neoplasms; Hemoglobins; Hemolysis; Hydrogen Peroxide; Hypochlorous Acid; Immunohistochemistry; Inflammatory Bowel Diseases; Intestinal Mucosa; Male; Mice; Mice, Inbred ICR; Neutrophil Activation; Oxidation-Reduction; Sheep; Tyrosine

2009
Accumulation of lipid peroxidation-derived DNA lesions: potential lead markers for chemoprevention of inflammation-driven malignancies.
    Mutation research, 2005, Dec-11, Volume: 591, Issue:1-2

    Chronic inflammatory processes produce an excess of ROS and DNA-reactive aldehydes from lipid peroxidation (LPO), such as trans-4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA), which can modify cellular macromolecules and drive to malignancy. Etheno-modified DNA bases are generated inter alia by reaction of DNA with the major LPO product, HNE. We are investigating steady-state levels of etheno-DNA adducts in organs with diseases related to persistent inflammatory processes that can lead to malignancies. We have developed ultrasensitive and specific methods for the detection of etheno-DNA base adducts in human tissues and in urine. Etheno-DNA adduct levels were found to be significantly elevated in the affected organs of subjects with chronic pancreatitis, ulcerative colitis and Crohn's disease. When patients with alcohol abuse-related hepatitis, fatty liver, fibrosis and cirrhosis were compared with asymptomatic livers, excess hepatic DNA damage was seen in the three latter patient groups. Etheno-deoxyadenosine excreted in urine was measured in HBV-infected patients diagnosed with chronic hepatitis, cirrhosis and hepatocellular carcinoma. As compared to controls, these patients had up to 90-fold increased urinary levels. Impaired or imbalanced DNA-repair pathways may influence the steady-state levels of etheno-DNA adducts in inflamed tissues. In conclusion, etheno-DNA adducts may serve as potential lead markers for assessing progression of inflammatory cancer-prone diseases. If so, the efficacy of human chemopreventive interventions for malignant disease prevention could be verified.

    Topics: Aldehydes; Cross-Linking Reagents; DNA Adducts; DNA Damage; Ethanol; Humans; Inflammation; Inflammatory Bowel Diseases; Lipid Peroxidation; Liver; Malondialdehyde; Molecular Structure; Neoplasms; Oxidative Stress; Pancreatitis, Chronic; Risk Factors

2005
Determination of the lipid peroxidation product (E)-4-hydroxy-2-nonenal in clinical samples by gas chromatography--negative-ion chemical ionisation mass spectrometry of the O-pentafluorobenzyl oxime.
    Journal of chromatography. B, Biomedical sciences and applications, 1997, Apr-11, Volume: 691, Issue:2

    (E)-4-Hydroxy-2-nonenal (HNE) is a highly reactive product of the free radical-stimulated lipid peroxidation of phospholipid-bound arachidonic acid in cellular membranes. We describe a sensitive and specific method for the determination of HNE in clinical samples. The method is based on the formation of the O-pentafluorobenzyl (O-PFB) oxime derivative of HNE, which is then extracted and cleaned up by solid-phase extraction. The HNE O-PFB oxime is then analysed without further derivatisation by capillary column gas chromatography-negative ion chemical ionisation mass spectrometry (GC-NICI-MS) using selected-ion monitoring. Concentrations down to the pmol range were achieved using deuterated HNE as an internal standard. The method was used to determine HNE in the cerebrospinal fluid and plasma of patients with Parkinson's disease, the plasma of patients with HIV-1 infection and AIDS and in inflamed mucosal biopsy specimens from patients with inflammatory bowel disease.

    Topics: Acquired Immunodeficiency Syndrome; Adult; Aged; Aldehydes; Chromatography, Gas; Female; Humans; Hydroxylamines; Indicators and Reagents; Inflammatory Bowel Diseases; Intestinal Mucosa; Lipid Peroxidation; Male; Mass Spectrometry; Middle Aged; Parkinson Disease

1997