4-hydroxy-2-nonenal and Hypoglycemia

4-hydroxy-2-nonenal has been researched along with Hypoglycemia* in 2 studies

Other Studies

2 other study(ies) available for 4-hydroxy-2-nonenal and Hypoglycemia

ArticleYear
Effects of Alda-1, an Aldehyde Dehydrogenase-2 Agonist, on Hypoglycemic Neuronal Death.
    PloS one, 2015, Volume: 10, Issue:6

    Hypoglycemic encephalopathy (HE) is caused by a lack of glucose availability to neuronal cells, and no neuroprotective drugs have been developed as yet. Studies on the pathogenesis of HE and the development of new neuroprotective drugs have been conducted using animal models such as the hypoglycemic coma model and non-coma hypoglycemia model. However, both models have inherent problems, and establishment of animal models that mimic clinical situations is desirable. In this study, we first developed a short-term hypoglycemic coma model in which rats could be maintained in an isoelectric electroencephalogram (EEG) state for 2 min and subsequent hyperglycemia without requiring anti-seizure drugs and an artificial ventilation. This condition caused the production of 4-hydroxy-2-nonenal (4-HNE), a cytotoxic aldehyde, in neurons of the hippocampus and cerebral cortex, and a marked increase in neuronal death as evaluated by Fluoro-Jade B (FJB) staining. We also investigated whether N-(1,3-benzodioxole-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1), a small-molecule agonist of aldehyde dehydrogenase-2, could attenuate 4-HNE levels and reduce hypoglycemic neuronal death. After confirming that EEG recordings remained isoelectric for 2 min, Alda-1 (8.5 mg/kg) or vehicle (dimethyl sulfoxide; DMSO) was administered intravenously with glucose to maintain a blood glucose level of 250 to 270 mg/dL. Fewer 4-HNE and FJB-positive cells were observed in the cerebral cortex of Alda-1-treated rats than in DMSO-treated rats 24 h after glucose administration (P = 0.002 and P = 0.020). Thus, activation of the ALDH2 pathway could be a molecular target for HE treatment, and Alda-1 is a potentially neuroprotective agent that exerts a beneficial effect on neurons when intravenously administered simultaneously with glucose.

    Topics: Aldehyde Dehydrogenase; Aldehyde Dehydrogenase, Mitochondrial; Aldehydes; Animals; Benzamides; Benzodioxoles; Cell Death; Cerebral Cortex; Coma; Disease Models, Animal; Glucose; Hippocampus; Hypoglycemia; Injections, Intravenous; Male; Mitochondrial Proteins; Neurons; Neuroprotective Agents; Rats; Rats, Sprague-Dawley

2015
L-carnitine inhibits hypoglycemia-induced brain damage in the rat.
    Brain research, 2005, Aug-16, Volume: 1053, Issue:1-2

    Hypoglycemia sometimes occurs in patients with diabetes mellitus who receive excessive doses of insulin. Severe hypoglycemia has been known to induce mitochondrial swelling followed by neuronal death in the brain. Since L-carnitine effectively preserves mitochondrial function in various cells both in vitro and in vivo, we investigated its effects on the neuronal damage induced by hypoglycemic insult in male Wistar rats. Animals were given L-carnitine-containing water (0.1%) for 1 week and then received insulin (20 U/kg, i.p.) to induce hypoglycemia. Although L-carnitine did not affect the mortality of animals that developed hypoglycemic shock, it improved the cognitive function of the survived animals as assessed by the Morris water-maze test. L-carnitine effectively inhibited the increase in oxidized glutathione and mitochondrial dysfunction in the hippocampus and prevented neuronal injury. L-carnitine also inhibited the decrease in mitochondrial membrane potential and the generation of reactive oxygen species in hippocampal neuronal cells cultured in glucose-deprived medium. These results suggest that L-carnitine prevents hypoglycemia-induced neuronal damage in the hippocampus, presumably by preserving mitochondrial functions. Thus, L-carnitine may have therapeutic potential in patients with hypoglycemia induced by insulin overdose.

    Topics: Aldehydes; Analysis of Variance; Animals; Apoptosis; Benzimidazoles; Brain Injuries; Carbocyanines; Carnitine; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Glucose; Glutathione; Hippocampus; Hypoglycemia; Immunohistochemistry; In Situ Nick-End Labeling; Insulin; Male; Maze Learning; Membrane Potentials; Mitochondria; Neurons; Rats; Rats, Wistar; Reaction Time; Reactive Oxygen Species; Respiration; Tetrazolium Salts; Thiazoles; Time Factors

2005