4-hydroxy-2-nonenal has been researched along with Hypertrophy* in 8 studies
8 other study(ies) available for 4-hydroxy-2-nonenal and Hypertrophy
Article | Year |
---|---|
Effects of Medium-chain Triglycerides Administration in Chemically-induced Carcinogenesis in Mice.
The aim of this study was to investigate the effects of medium-chain triglycerides (MCTs) on chemically-induced hepatic carcinogenesis (HCC) in mice.. In a first set of experiments, mice were treated with diethylnitrosoamine intraperitoneally at two weeks of age. They were fed chow containing MCT or a normal chow diet and sacrificed after 28 weeks. Incidence of hepatic tumor was compared between the two groups. Expression of oxidative stress, and inflammatory cytokines and chemokines in liver tissues were examined. In a second set of experiments, the histopathological findings of the intraperitoneal adipose tissue were assessed, and expression of adipocytokines in the fat tissue was measured. In a third set of experiments, plasma β-hydroxybutyrate (HB) concentration was measured in both animals fed chow containing MCT and a normal chow diet. Mouse HCC cells were co-cultured with β-HB, and the numbers of tumor cells were counted at days 3 and 7.. In the first set of experiments, the tumor count observed in the control group was significantly blunted in the MCT group. Maximum tumor diameter also decreased in the MCT group compared to the control group. The expression of inflammatory cytokines and chemokines was significantly decreased by MCT. Furthermore, expression of 4-hydroxynonenal was lower in the MCT group compared to the control group. In the second set of experiments, hypertrophy of the adipocytes was suppressed, and the concentration of adiponectin and leptin in the adipose tissue decreased by MCT. In the third set of experiments, plasma β-HB concentration increased in the MCT group as expected. β-HB significantly inhibited the proliferation of HCC cells.. MCT administration markedly suppresses the incidence of chemically-induced HCC by inhibition of inflammation and increase of ketone bodies. Topics: 3-Hydroxybutyric Acid; Adipocytes; Adipokines; Adiponectin; Adipose Tissue; Aldehydes; Animal Feed; Animals; Carcinogens; Carcinoma, Hepatocellular; Cell Count; Cell Proliferation; Chemokines; Cytokines; Diethylnitrosamine; Hypertrophy; Inflammation; Leptin; Liver; Liver Neoplasms, Experimental; Male; Mice; Mice, Inbred C3H; Oxidative Stress; Triglycerides | 2019 |
Increased 4-hydroxy-2-nonenal-induced proteasome dysfunction is correlated with cardiac damage in streptozotocin-injected rats with isoproterenol infusion.
Increase in 4-hydroxy-2-nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)-infused type 1 diabetes mellitus (DM) rats. Eight-week-old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg(-1) ). The rats were infused with ISO (5 mg kg(-1) ) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin-like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm(2) ), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE-induced decrease in proteasome activity may be involved in the cardiac pathology in STZ-injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd. Topics: Aldehyde Dehydrogenase, Mitochondrial; Aldehydes; Animals; Cell Line; Diabetes Mellitus, Experimental; Fibrosis; Heart Function Tests; Hypertrophy; Isoproterenol; Male; Myocardium; Myocytes, Cardiac; Proteasome Endopeptidase Complex; Rats, Sprague-Dawley; Streptozocin | 2016 |
Attenuated SAG expression exacerbates 4-hydroxy-2-nonenal-induced apoptosis and hypertrophy of H9c2 cardiomyocytes.
Oxidative stress, associated with the accumulation of reactive oxygen species (ROS), results in numerous and detrimental effects on the myocardium such as the induction of apoptotic cell death, hypertrophy, fibrosis, dysfunction, and dilatation. The product of sensitive to apoptosis gene (SAG) is a RING finger protein that has been shown to have a protective effect against apoptosis induced by oxidative stress in various cell types. The major reactive aldehydic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), is believed to be largely responsible for cytopathological effects observed during oxidative stress. In the present study, we showed that the transfection of H9c2 clonal myoblastic cells with small interfering RNA (siRNA) specific for SAG markedly attenuated SAG expression and exacerbates HNE-induced apoptosis and hypertrophy. The knockdown of SAG expression resulted in the modulation of cellular redox status, mitochondrial function, and cellular oxidative damage. Taken together, our results showed that the suppression of SAG expression by siRNA enhanced HNE-induced apoptosis and hypertrophy of cultured cardiomyocytes via the disruption of the cellular redox balance. Given the importance of the SAG protein in the regulation of the redox status of cardiomyocytes, we conclude that this protein may be a potential new target in the development of therapeutic agents for the prevention of cardiovascular diseases. Topics: Aldehydes; Animals; Apoptosis; Carrier Proteins; Cell Line; Hypertrophy; Mice, Knockout; Mitochondria, Heart; Myocytes, Cardiac; Oxidation-Reduction; Oxidative Stress; Rats | 2015 |
Activation of angiotensin II type 1 receptor-associated protein exerts an inhibitory effect on vascular hypertrophy and oxidative stress in angiotensin II-mediated hypertension.
Activation of tissue angiotensin II (Ang II) type 1 receptor (AT1R) plays an important role in the development of vascular remodelling. We have shown that the AT1R-associated protein (ATRAP/Agtrap), a specific binding protein of AT1R, functions as an endogenous inhibitor to prevent pathological activation of the tissue renin-angiotensin system. In this study, we investigated the effects of ATRAP on Ang II-induced vascular remodelling.. Transgenic (Tg) mice with a pattern of aortic vascular-dominant overexpression of ATRAP were obtained, and Ang II or vehicle was continuously infused into Tg and wild-type (Wt) mice via an osmotic minipump for 14 days. Although blood pressure of Ang II-infused Tg mice was comparable with that of Ang II-infused Wt mice, the Ang II-mediated development of aortic vascular hypertrophy was partially inhibited in Tg mice compared with Wt mice. In addition, Ang II-mediated up-regulation of vascular Nox4 and p22(phox), NADPH oxidase components, and 4-HNE, a marker of reactive oxygen species (ROS) generation, was significantly suppressed in Tg mice, with a concomitant inhibition of activation of aortic vascular p38MAPK and JNK by Ang II. This protection afforded by vascular ATRAP against Ang II-induced activation of NADPH oxidase is supported by in vitro experimental data using adenoviral transfer of recombinant ATRAP.. These results indicate that activation of aortic vascular ATRAP partially inhibits the Nox4/p22(phox)-ROS-p38MAPK/JNK pathway and pathological aortic hypertrophy provoked by Ang II-mediated hypertension, thereby suggesting ATRAP as a novel receptor-binding modulator of vascular pathophysiology. Topics: Adaptor Proteins, Signal Transducing; Aldehydes; Angiotensin II; Animals; Aorta; Cells, Cultured; Cytochrome b Group; Disease Models, Animal; Hypertension; Hypertrophy; JNK Mitogen-Activated Protein Kinases; Mice; Mice, Inbred C57BL; Mice, Transgenic; NADPH Oxidase 4; NADPH Oxidases; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Time Factors; Transfection | 2013 |
Acceleration of UVB-induced photoageing in nrf2 gene-deficient mice.
Ultraviolet (UV) radiation is one of the most important environmental factors involved in the pathogenesis of premature skin ageing, termed photoageing. The harmful effects of UV in photoageing are associated with the generation of reactive oxygen species, and cellular antioxidants act to prevent the occurrence and reduce the severity of UV-induced photoageing. The transcription factor Nrf2 and its cytoplasmic anchor protein, Keap1, are central regulators of the cellular antioxidant response. Here, we investigated the role of the Nrf2-Keap1 pathway in photoageing using nrf2 gene-deficient (nrf2(-/-)) mice. Our results indicated that UVB-irradiated nrf2(-/-) mice showed accelerated photoageing, such as coarse wrinkle formation, loss of skin flexibility, epidermal thickening and deposition of extracellular matrix in the upper dermis. In addition, nrf2(-/-) mice also showed an increase in cutaneous reactivity for the lipid peroxidation product 4-hydroxy-2-nonenal and a significant decrease in cutaneous glutathione level. These findings indicate that Nrf2 plays the important role in the protection against UVB-induced photoageing. Topics: Adaptor Proteins, Signal Transducing; Aldehydes; Animals; Antioxidants; Cytoskeletal Proteins; Female; Glutathione; Hypertrophy; Kelch-Like ECH-Associated Protein 1; Lipid Peroxidation; Mice; Mice, Inbred ICR; Mice, Knockout; Mice, Mutant Strains; Models, Animal; NF-E2-Related Factor 2; Signal Transduction; Skin; Skin Aging; Time Factors; Ultraviolet Rays | 2011 |
Gene transfer of NAD(P)H oxidase inhibitor to the vascular adventitia attenuates medial smooth muscle hypertrophy.
We previously showed that a systemic inhibitor of gp91(phox) (nox2)-based NAD(P)H oxidase abolishes angiotensin II (Ang II)-induced vascular hypertrophy. In the present study, we tested whether perivascular transfection with Ad-gp91ds-eGFP (an adenoviral bicistronic construct targeting NAD(P)H oxidase in fibroblasts) or controls Ad-CMV-eGFP and Ad-scrmb-eGFP would affect medial hypertrophy in response to Ang II. In C57BL/6J mice, we applied Ad-gp91ds-eGFP or controls to the left carotid adventitia, and 2 days later we implanted minipumps delivering vehicle or Ang II (750 microg/kg per day) for 7 days. None of the viral treatments affected Ang II-induced systolic blood pressure elevation. Immunohistochemical staining showed marker eGFP in adventitial fibroblasts and some macrophages, indicating expression of the gp91ds inhibitor. As expected, Ang II induced medial hypertrophy (medial cross-sectional area, 32.96+/-2.04 versus 20.57+/-1.00x10(3) microm2, Ang II versus control; P<0.001) that was significantly inhibited by Ad-gp91ds-eGFP (26.23+/-0.90x10(3) microm2; P<0.01) but not control viruses. Application of viruses alone did not change medial size under control conditions. Immunohistochemical staining and semiquantitative analysis showed a 70% increase in reactive oxygen species levels measured by the lipid peroxidation byproduct 4-hydroxynonenal (4-HNE) throughout the carotid wall in the Ang II group versus vehicle. After treatment with Ad-gp91ds-eGFP, 4-HNE generation was normalized. Thus NAD(P)H oxidases in adventitial fibroblasts and macrophages appear to modulate Ang II-induced medial hypertrophy. Topics: Adenoviridae; Aldehydes; Angiotensin II; Animals; Blood Pressure; Carotid Arteries; Defective Viruses; Genes, Reporter; Genetic Therapy; Genetic Vectors; Glycoproteins; Hypertrophy; Injections, Intra-Arterial; Lipid Peroxidation; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Muscle, Smooth, Vascular; NADPH Oxidase 2; NADPH Oxidases; Oxidative Stress; Phosphoproteins; Reactive Oxygen Species; Tunica Media | 2004 |
NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy.
Our preliminary data suggested that angiotensin II (Ang II)-induced reactive oxygen species are involved in intercellular adhesion molecule-1 (ICAM-1) expression and leukocyte infiltration in the rat thoracic aorta. Other reports demonstrating reactive oxygen species-induced cell growth suggested a potential role of NAD(P)H oxidase in vascular hypertrophy. In the present study, we postulate that NAD(P)H oxidase is functionally involved in Ang II-induced ICAM-1 expression, macrophage infiltration, and vascular growth, and that oxidase inhibition attenuates these processes independently of a reduction in blood pressure.. Rats were infused subcutaneously with vehicle or Ang II (750 microg/kg per day) for 1 week in the presence or absence of gp91 docking sequence (gp91ds)-tat peptide (1 mg/kg per day), a cell-permeant inhibitor of NAD(P)H oxidase. Immunohistochemical staining for ICAM-1 and ED1, a marker of monocytes and macrophages, showed that both were markedly increased with Ang II compared with vehicle and were reduced in rats receiving Ang II plus gp91ds-tat. This effect was accompanied by an Ang II-induced increase in medial hypertrophy that was attenuated by coinfusion of gp91ds-tat; however, gp91ds-tat had no effect on blood pressure.. Ang II-enhanced NAD(P)H oxidase plays a role in the induction of ICAM-1 expression, leukocyte infiltration, and vascular hypertrophy, acting independently of changes in blood pressure. Topics: Aldehydes; Angiotensin II; Animals; Aorta, Thoracic; Blood Pressure; Chemotaxis, Leukocyte; Enzyme Inhibitors; Gene Expression Regulation; Glycoproteins; Hypertrophy; Intercellular Adhesion Molecule-1; Macrophages; Male; Membrane Glycoproteins; NADPH Oxidase 2; NADPH Oxidases; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Single-Blind Method; Tunica Intima; Tunica Media; Vasculitis | 2003 |
Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development.
Mitochondrial NADP+-isocitrate dehydrogenase activity is crucial for cardiomyocyte energy and redox status, but much remains to be learned about its role and regulation. We obtained data in spontaneously hypertensive rat hearts that indicated a partial inactivation of this enzyme before hypertrophy development. We tested the hypothesis that cardiac mitochondrial NADP+-isocitrate dehydrogenase is a target for modification by the lipid peroxidation product 4-hydroxynonenal, an aldehyde that reacts readily with protein sulfhydryl and amino groups. This hypothesis is supported by the following in vitro and in vivo evidence. In isolated rat heart mitochondria, enzyme inactivation occurred within a few minutes upon incubation with 4-hydroxynonenal and was paralleled by 4-hydroxynonenal/NADP+-isocitrate dehydrogenase adduct formation. Enzyme inactivation was prevented by the addition of its substrate isocitrate or a thiol, cysteine or glutathione, suggesting that 4-hydroxynonenal binds to a cysteine residue near the substrate's binding site. Using an immunoprecipitation approach, we demonstrated the formation of 4-hydroxynonenal/NADP+-isocitrate dehydrogenase adducts in the heart and their increased level (210%) in 7-week-old spontaneously hypertensive rats compared with control Wistar Kyoto rats. To the best of our knowledge, this is the first study to demonstrate that mitochondrial NADP+-isocitrate dehydrogenase is a target for inactivation by 4-hydroxynonenal binding. Furthermore, the pathophysiological significance of our finding is supported by in vivo evidence. Taken altogether, our results have implications that extend beyond mitochondrial NADP+-isocitrate dehydrogenase. Indeed, they emphasize the implication of post-translational modifications of mitochondrial metabolic enzymes by 4-hydroxynonenal in the early oxidative stress-related pathophysiological events linked to cardiac hypertrophy development. Topics: Aldehydes; Animals; Blotting, Western; Cysteine; Cysteine Proteinase Inhibitors; Dose-Response Relationship, Drug; Enzyme Activation; Glutathione; Hypertrophy; Isocitrate Dehydrogenase; Lipid Peroxidation; Mitochondria; Myocardium; Oxidative Stress; Precipitin Tests; Protein Binding; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reverse Transcriptase Polymerase Chain Reaction; Tissue Distribution | 2003 |