4-hydroxy-2-nonenal and Fibrosis

4-hydroxy-2-nonenal has been researched along with Fibrosis* in 21 studies

Other Studies

21 other study(ies) available for 4-hydroxy-2-nonenal and Fibrosis

ArticleYear
Ketogenic diets composed of long-chain and medium-chain fatty acids induce cardiac fibrosis in mice.
    Molecular metabolism, 2023, Volume: 72

    Heart diseases are the leading cause of death worldwide. Metabolic interventions via ketogenic diets (KDs) have been used for decades to treat epilepsy, and more recently, also diabetes and obesity, as common comorbidities of heart diseases. However, recent reports linked KDs, based on long-chain triglycerides (LCTs), to cardiac fibrosis and a reduction of heart function in rodents. As intervention using medium-chain triglycerides (MCTs) was recently shown to be beneficial in murine cardiac reperfusion injury, the question arises as to what extent the fatty acid (FA)-composition in a KD alters molecular markers of FA-oxidation (FAO) and modulates cardiac fibrotic outcome.. The effects of LCT-KD as well as an LCT/MCT mix (8:1 ketogenic ratio) on cardiac tissue integrity and the plasma metabolome were assessed in adult male C57/BL6NRJ mice after eight weeks on the respective diet.. Both KDs resulted in increased amount of collagen fibers and cardiac tissue was immunologically indistinguishable between groups. MCT supplementation resulted in i) profound changes in plasma metabolome, ii) reduced hydroxymethylglutaryl-CoA synthase upregulation, and mitofusin 2 downregulation, iii) abrogation of LCT-induced mitochondrial enlargement, and iv) enhanced FAO profile. Contrary to literature, mitochondrial biogenesis was unaffected by KDs. We propose that the observed tissue remodeling is caused by the accumulation of 4-hydroxy-2-nonenal protein adducts, despite an inconspicuous nuclear factor (erythroid-derived 2)-like 2 pathway.. We conclude that regardless of the generally favorable effects of MCTs, they cannot inhibit 4-hydroxy-2-nonenal adduct formation and fibrotic tissue formation in this setting. Furthermore, we support the burgeoning concern about the effect of KDs on the cardiac safety profile.

    Topics: Animals; Diet, Ketogenic; Fatty Acids; Fibrosis; Heart Diseases; Male; Mice; Triglycerides

2023
Chronic treatment with the mitochondrial peptide humanin prevents age-related myocardial fibrosis in mice.
    American journal of physiology. Heart and circulatory physiology, 2018, 11-01, Volume: 315, Issue:5

    Topics: Age Factors; Aging; Aldehydes; Animals; Apoptosis; Cardiomyopathies; Cell Line, Tumor; Cell Proliferation; Cytokines; Cytoprotection; Female; Fibroblasts; Fibrosis; Glycogen Synthase Kinase 3 beta; Humans; Intracellular Signaling Peptides and Proteins; Matrix Metalloproteinase 2; Mice, Inbred C57BL; Myocytes, Cardiac; Protective Agents; Proto-Oncogene Proteins c-akt; Receptor, Fibroblast Growth Factor, Type 2; Signal Transduction; Transforming Growth Factor beta1

2018
Vanin-1 in Renal Pelvic Urine Reflects Kidney Injury in a Rat Model of Hydronephrosis.
    International journal of molecular sciences, 2018, Oct-16, Volume: 19, Issue:10

    Urinary tract obstruction and the subsequent development of hydronephrosis can cause kidney injuries, which results in chronic kidney disease. Although it is important to detect kidney injuries at an early stage, new biomarkers of hydronephrosis have not been identified. In this study, we examined whether vanin-1 could be a potential biomarker for hydronephrosis. Male Sprague-Dawley rats were subjected to unilateral ureteral obstruction (UUO). On day 7 after UUO, when the histopathological renal tubular injuries became obvious, the vanin-1 level in the renal pelvic urine was significantly higher than that in voided urine from sham-operated rats. Furthermore, vanin-1 remained at the same level until day 14. There was no significant difference in the serum vanin-1 level between sham-operated rats and rats with UUO. In the kidney tissue, the mRNA and protein expressions of vanin-1 significantly decreased, whereas there was increased expression of transforming growth factor (TGF)-β1 and Snail-1, which plays a pivotal role in the pathogenesis of renal fibrosis via epithelial-to-mesenchymal transition (EMT). These results suggest that vanin-1 in the renal pelvic urine is released from the renal tubular cells of UUO rats and reflects renal tubular injuries at an early stage. Urinary vanin-1 may serve as a candidate biomarker of renal tubular injury due to hydronephrosis.

    Topics: Aldehydes; Amidohydrolases; Animals; Disease Models, Animal; Disease Progression; Epithelial-Mesenchymal Transition; Fibrosis; GPI-Linked Proteins; Hydronephrosis; Kidney Pelvis; Male; Rats, Sprague-Dawley; RNA, Messenger; Snail Family Transcription Factors; Transforming Growth Factor beta1; Ureteral Obstruction

2018
Attenuation of diabetic nephropathy by Sanziguben Granule inhibiting EMT through Nrf2-mediated anti-oxidative effects in streptozotocin (STZ)-induced diabetic rats.
    Journal of ethnopharmacology, 2017, Jun-09, Volume: 205

    Diabetic nephropathy (DN) is an acute and serious diabetic complication characterized by renal hypertrophy and renal fibrosis with the expansion of extracellular matrices. Diabetic nephropathy has become a major cause of end-stage kidney disease. Sanziguben Granule (SZGB) is a compound prescription which has been widely applied in clinical medicine for the prevention and treatment of diabetic nephropathy as well as for acute and chronic kidney injuries. However, the mechanism of protective effects of SZGB in DN remains unclear.. In this research, we investigated the effects of SZGB on renal interstitial fibrosis, antioxidant proficiency, and apoptosis in streptozotocin (STZ)-induced diabetic rats. Diabetic rats were prepared by performing a right uninephrectomy along with a single intraperitoneal injection of STZ. Rats were divided into six groups including sham, DN, SZGB-D, SZGB-Z, SZGB-G and fosinopril. SZGB and fosinopril were given to rats by gavage for 12 weeks. Samples from urine, blood and kidneys were collected for biochemical, histological, immunohistochemical and western blot analyses.. We found that rats treated with SZGB showed reduced 24-h urinary protein excretion along with reduced serum total cholesterol (TC) and triglyceride (TG) levels. SZGB was also shown to prevent the disruption of catalase activity and reduce serum urea, creatinine, and renal malondialdehyde while increasing glutathione levels. Moreover, SZGB administration markedly improved the expression levels of E-cadherin, 4-HNE, Nrf2, HO-1, and Bcl-2, while it decreased the expression levels of Vimentin, α-SMA and Cleaved caspase-3 in the kidneys of diabetic rats. The renoprotective effects of SZGB was believed to be mediated by its antioxidant capacity, and SZGB treatment attenuated renal fibrosis through stimulating the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway in the diabetic kidneys.. Therefore, it is suggested that SZGB can restrain epithelial-mesenchymal transition (EMT) through stimulating the Nrf2 pathway, which improves renal interstitial fibrosis in DN.

    Topics: Aldehydes; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Drugs, Chinese Herbal; Fibrosis; Gene Expression Regulation; Male; NF-E2-Related Factor 2; Oxidative Stress; Proteinuria; Rats; Rats, Sprague-Dawley; Streptozocin

2017
Intermedin inhibits unilateral ureteral obstruction-induced oxidative stress via NADPH oxidase Nox4 and cAMP-dependent mechanisms.
    Renal failure, 2017, Volume: 39, Issue:1

    NADPH oxidase Nox4-derived reactive oxygen species (ROS) play important roles in renal fibrosis. Our previous study demonstrated that intermedin (IMD) alleviated unilateral ureteral obstruction (UUO)-induced renal fibrosis by inhibition of ROS. However, the precise mechanisms remain unclear. Herein, we investigated the effect of IMD on Nox4 expression and NADPH oxidase activity in rat UUO model, and explored if these effect were achieved through cAMP-PKA pathway, the important post-receptor signal transduction pathway of IMD, in TGF-β1-stimulated rat proximal tubular cell (NRK-52E). Renal fibrosis was induced by UUO. NRK-52E was exposed to rhTGF-β1 to establish an in vitro model of fibrosis. IMD was overexpressed in the kidney and in NRK-52E by IMD gene transfer. We studied UUO-induced ROS by measuring dihydroethidium levels and lipid peroxidation end-product 4-hydroxynonenal expression. Nox4 expression in the obstructed kidney of UUO rat or in TGF-β1-stimulated NRK-52E was measured by quantitative RT-PCR and Western blotting. We analyzed NADPH oxidase activity using a lucigenin-enhanced chemiluminescence system. We showed that UUO-stimulated ROS production was remarkably attenuated by IMD gene transfer. IMD overexpression inhibited UUO-induced up-regulation of Nox4 and activation of NADPH oxidase. Consistent with in vivo results, TGF-β1-stimulated increase in Nox4 expression and NADPH oxidase activity was blocked by IMD. In NRK-52E, these beneficial effects of IMD were abolished by pretreatment with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-89), a PKA inhibitor, and mimicked by a cell-permeable cAMP analog dibutyl-cAMP. Our results indicate that IMD exerts anti-oxidant effects by inhibition of Nox4, and the effect can be mediated by cAMP-PKA pathway.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Adrenomedullin; Aldehydes; Animals; Cell Line; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Ethidium; Fibrosis; Gene Transfer Techniques; Isoquinolines; Kidney; Kidney Diseases; Lipid Peroxidation; Male; NADPH Oxidase 4; Neuropeptides; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Signal Transduction; Sulfonamides; Transforming Growth Factor beta1; Up-Regulation

2017
Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.
    The British journal of nutrition, 2017, Volume: 117, Issue:3

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

    Topics: Aldehydes; Animals; Antioxidants; Apoptosis; Biomarkers; Cardiovascular Diseases; Catalase; Diabetes Mellitus, Experimental; Dietary Supplements; Fibrosis; Glutathione; Heart; Lipid Peroxidation; Liver; Myocardium; Oxidative Stress; Rats, Wistar; RNA, Messenger; Superoxide Dismutase; Trace Elements; Zinc

2017
Increased 4-hydroxy-2-nonenal-induced proteasome dysfunction is correlated with cardiac damage in streptozotocin-injected rats with isoproterenol infusion.
    Cell biochemistry and function, 2016, Volume: 34, Issue:5

    Increase in 4-hydroxy-2-nonenal (4HNE) due to oxidative stress has been observed in a variety of cardiac diseases such as diabetic cardiomyopathy. 4HNE exerts a damaging effect in the myocardium by interfering with subcellular organelles like mitochondria by forming adducts. Therefore, we hypothesized that increased 4HNE adduct formation in the heart results in proteasome inactivation in isoproterenol (ISO)-infused type 1 diabetes mellitus (DM) rats. Eight-week-old male Sprague Dawley rats were injected with streptozotocin (STZ, 65 mg kg(-1) ). The rats were infused with ISO (5 mg kg(-1) ) for 2 weeks by mini pumps, after 8 weeks of STZ injection. We studied normal control (n = 8) and DM + ISO (n = 10) groups. Cardiac performance was assessed by echocardiography and Millar catheter at the end of the protocol at 20 weeks. Initially, we found an increase in 4HNE adducts in the hearts of the DM + ISO group. There was also a decrease in myocardial proteasomal peptidase (chymotrypsin and trypsin-like) activity. Increases in cardiomyocyte area (446 ± 32·7 vs 221 ± 10·83) (µm(2) ), per cent area of cardiac fibrosis (7·4 ± 0·7 vs 2·7 ± 0·5) and cardiac dysfunction were also found in DM + ISO (P < 0·05) relative to controls. We also found increased 4HNE adduct formation on proteasomal subunits. Furthermore, reduced aldehyde dehydrogenase 2 activity was observed in the myocardium of the DM + ISO group. Treatment with 4HNE (100 μM) for 4 h on cultured H9c2 cardiomyocytes attenuated proteasome activity. Therefore, we conclude that the 4HNE-induced decrease in proteasome activity may be involved in the cardiac pathology in STZ-injected rats infused with ISO. Copyright © 2016 John Wiley & Sons, Ltd.

    Topics: Aldehyde Dehydrogenase, Mitochondrial; Aldehydes; Animals; Cell Line; Diabetes Mellitus, Experimental; Fibrosis; Heart Function Tests; Hypertrophy; Isoproterenol; Male; Myocardium; Myocytes, Cardiac; Proteasome Endopeptidase Complex; Rats, Sprague-Dawley; Streptozocin

2016
Increased 4-hydroxynonenal protein adducts in male GSTA4-4/PPAR-α double knockout mice enhance injury during early stages of alcoholic liver disease.
    American journal of physiology. Gastrointestinal and liver physiology, 2015, Mar-01, Volume: 308, Issue:5

    To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male 129/SvJ mice (wild-type, WT) and glutathione S-transferase A4-4-null (GSTA4-/-) mice for 40 days. GSTA4-/- mice were crossed with peroxisome proliferator-activated receptor-α-null mice (PPAR-α-/-), and the effects of EtOH in the resulting double knockout (dKO) mice were compared with the other strains. EtOH increased lipid peroxidation in all except WT mice (P < 0.05). Increased steatosis and mRNA expression of the inflammatory markers CXCL2, tumor necrosis factor-α (TNF-α), and α-smooth muscle actin (α-SMA) were observed in EtOH GSTA4-/- compared with EtOH WT mice (P < 0.05). EtOH PPAR-α-/- mice had increased steatosis, serum alanine aminotransferase (ALT), and hepatic CD3+ T cell populations and elevated mRNA encoding CD14, CXCL2, TNF-α, IL-6, CD138, transforming growth factor-β, platelet-derived growth factor receptor-β (PDGFR-β), matrix metalloproteinase (MMP)-9, MMP-13, α-SMA, and collagen type 1 compared with EtOH WT mice. EtOH-fed dKO mice displayed elevation of periportal hepatic 4-hydroxynonenal adducts and serum antibodies against malondialdehyde adducts compared with EtOH feeding of GSTA4-/-, PPAR-α-/-, and WT mice (P < 0.05). ALT was higher in EtOH dKO mice compared with all other groups (P < 0.001). EtOH-fed dKO mice displayed elevated mRNAs for TNF-α and CD14, histological evidence of fibrosis, and increased PDGFR, MMP-9, and MMP-13 mRNAs compared with the EtOH GSTA4-/- or EtOH PPAR-α-/- genotype (P < 0.05). These findings demonstrate the central role lipid peroxidation plays in mediating progression of alcohol-induced necroinflammatory liver injury, stellate cell activation, matrix remodeling, and fibrosis.

    Topics: Actins; Alanine Transaminase; Aldehydes; Animals; Antibodies; Chemokine CXCL2; Cytokines; Fibrosis; Gene Deletion; Glutathione Transferase; Lipid Peroxidation; Lipopolysaccharide Receptors; Liver; Liver Diseases, Alcoholic; Male; Matrix Metalloproteinases; Mice; PPAR alpha; Receptor, Platelet-Derived Growth Factor beta; RNA, Messenger; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha

2015
The administration of Fructus Schisandrae attenuates dexamethasone-induced muscle atrophy in mice.
    International journal of molecular medicine, 2015, Volume: 36, Issue:1

    In the present study, we aimed to determine whether ethanol extracts of Fructus Schisandrae (FS), the dried fruit of Schizandra chinensis Baillon, mitigates the development of dexamethasone-induced muscle atrophy. Adult SPF/VAT outbred CrljOri:CD1 (ICR) mice were either treated with dexamethasone to induce muscle atrophy. Some mice were treated with various concentrations of FS or oxymetholone, a 17α-alkylated anabolic-androgenic steroid. Muscle thickness and weight, calf muscle strength, and serum creatine and creatine kinase (CK) levels were then measured. The administration of FS attenuated the decrease in calf thickness, gastrocnemius muscle thickness, muscle strength and weight, fiber diameter and serum lactate dehydrogenase levels in the gastrocnemius muscle bundles which was induced by dexamethasone in a dose-dependent manner. Treatment with FS also prevented the dexamethasone-induced increase in serum creatine and creatine kinase levels, histopathological muscle fiber microvacuolation and fibrosis, and the immunoreactivity of muscle fibers for nitrotyrosine, 4-hydroxynonenal, inducible nitric oxide synthase and myostatin. In addition, the destruction of the gastrocnemius antioxidant defense system was also inhibited by the administration of FS in a dose-dependent manner. FS downregulated the mRNA expression of atrogin-1 and muscle ring-finger protein-1 (involved in muscle protein degradation), myostatin (a potent negative regulator of muscle growth) and sirtuin 1 (a representative inhibitor of muscle regeneration), but upregulated the mRNA expression of phosphatidylinositol 3-kinase, Akt1, adenosine A1 receptor and transient receptor potential cation channel subfamily V member 4, involved in muscle growth and the activation of protein synthesis. The overall effects of treatment with 500 mg/kg FS were comparable to those observed following treatment with 50 mg/kg oxymetholone. The results from the present study support the hypothesis that FS has a favorable ameliorating effect on muscle atrophy induced by dexamethasone, by exerting anti-inflammatory and antioxidant effects on muscle fibers, which may be due to an increase in protein synthesis and a decrease in protein degradation.

    Topics: Aldehydes; Animals; Anti-Inflammatory Agents; Antioxidants; Creatine; Creatine Kinase; Dexamethasone; Drugs, Chinese Herbal; Fibrosis; L-Lactate Dehydrogenase; Mice; Mice, Inbred ICR; Muscle Proteins; Muscle Strength; Muscle Tonus; Muscle, Skeletal; Muscular Atrophy; Myostatin; Nitric Oxide Synthase Type II; Oxymetholone; Phosphatidylinositol 3-Kinase; Protein Biosynthesis; Proto-Oncogene Proteins c-akt; Receptor, Adenosine A1; RNA, Messenger; Schisandra; Sirtuin 1; SKP Cullin F-Box Protein Ligases; Tripartite Motif Proteins; TRPV Cation Channels; Tyrosine; Ubiquitin-Protein Ligases

2015
Oxidative/Nitrative Stress and Inflammation Drive Progression of Doxorubicin-Induced Renal Fibrosis in Rats as Revealed by Comparing a Normal and a Fibrosis-Resistant Rat Strain.
    PloS one, 2015, Volume: 10, Issue:6

    Chronic renal fibrosis is the final common pathway of end stage renal disease caused by glomerular or tubular pathologies. Genetic background has a strong influence on the progression of chronic renal fibrosis. We recently found that Rowett black hooded rats were resistant to renal fibrosis. We aimed to investigate the role of sustained inflammation and oxidative/nitrative stress in renal fibrosis progression using this new model. Our previous data suggested the involvement of podocytes, thus we investigated renal fibrosis initiated by doxorubicin-induced (5 mg/kg) podocyte damage. Doxorubicin induced progressive glomerular sclerosis followed by increasing proteinuria and reduced bodyweight gain in fibrosis-sensitive, Charles Dawley rats during an 8-week long observation period. In comparison, the fibrosis-resistant, Rowett black hooded rats had longer survival, milder proteinuria and reduced tubular damage as assessed by neutrophil gelatinase-associated lipocalin (NGAL) excretion, reduced loss of the slit diaphragm protein, nephrin, less glomerulosclerosis, tubulointerstitial fibrosis and matrix deposition assessed by periodic acid-Schiff, Picro-Sirius-red staining and fibronectin immunostaining. Less fibrosis was associated with reduced profibrotic transforming growth factor-beta, (TGF-β1) connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL-1a1) mRNA levels. Milder inflammation demonstrated by histology was confirmed by less monocyte chemotactic protein 1 (MCP-1) mRNA. As a consequence of less inflammation, less oxidative and nitrative stress was obvious by less neutrophil cytosolic factor 1 (p47phox) and NADPH oxidase-2 (p91phox) mRNA. Reduced oxidative enzyme expression was accompanied by less lipid peroxidation as demonstrated by 4-hydroxynonenal (HNE) and less protein nitrosylation demonstrated by nitrotyrosine (NT) immunohistochemistry and quantified by Western blot. Our results demonstrate that mediators of fibrosis, inflammation and oxidative/nitrative stress were suppressed in doxorubicin nephropathy in fibrosis-resistant Rowett black hooded rats underlying the importance of these pathomechanisms in the progression of renal fibrosis initiated by glomerular podocyte damage.

    Topics: Aldehydes; Animals; Body Weight; Chemokine CCL2; Connective Tissue Growth Factor; Disease Progression; Disease Resistance; Dose-Response Relationship, Drug; Doxorubicin; Fibrosis; Kidney; Male; Membrane Proteins; Oxidative Stress; Proteinuria; Rats; Reactive Nitrogen Species; Species Specificity; Transforming Growth Factor beta1; Tyrosine

2015
Fibroblast growth factor 21 deletion aggravates diabetes-induced pathogenic changes in the aorta in type 1 diabetic mice.
    Cardiovascular diabetology, 2015, 06-11, Volume: 14, Issue:1

    Fibroblast growth factor 21 (FGF21) is an important regulator in glucose and lipid metabolism, and has been considered as a potential therapy for diabetes. The effect of FGF21 on the development and progression of diabetes-induced pathogenic changes in the aorta has not currently been addressed. To characterize these effects, type 1 diabetes was induced in both FGF21 knockout (FGF21KO) and C57BL/6 J wild type (WT) mice via multiple-dose streptozotocin injection. FGF21KO diabetic mice showed both earlier and more severe aortic remodeling indicated by aortic thickening, collagen accumulation and fibrotic mediator connective tissue growth factor expression. This was accompanied by significant aortic cell apoptosis than in WT diabetic mice. Further investigation found that FGF21 deletion exacerbated aortic inflammation and oxidative stress reflected by elevated expression of tumor necrosis factor α and transforming growth factor β, and the accumulation of 3-nitrotyrocine and 4-Hydroxynonenal. FGF21 administration can reverse the pathologic changes in FGF21KO diabetic mice. These findings demonstrate that FGF21 deletion aggravates aortic remodeling and cell death probably via exacerbation of aortic inflammation and oxidative stress. This marks FGF21 as a potential therapy for the treatment of aortic damage due to diabetes.

    Topics: Aldehydes; Animals; Aorta; Aortic Diseases; Apoptosis; Collagen; Connective Tissue Growth Factor; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetic Angiopathies; Fibroblast Growth Factors; Fibrosis; Gene Deletion; Genetic Predisposition to Disease; Male; Mice, Inbred C57BL; Mice, Knockout; Nitric Oxide Synthase Type III; Oxidative Stress; Phenotype; Signal Transduction; Time Factors; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha; Tyrosine; Vascular Remodeling

2015
High fat diet causes renal fibrosis in LDLr-null mice through MAPK-NF-κB pathway mediated by Ox-LDL.
    Journal of cardiovascular pharmacology, 2014, Volume: 63, Issue:2

    Dyslipidemia, particularly increased LDL-cholesterol level in serum, is associated with atherosclerosis and fibrosis in different organs. This study was designed to investigate the effects of increase in LDL-cholesterol on renal fibrosis.. Wild-type (WT) and LDLr knockout (KO) mice were fed standard or high fat diet (HFD), and their kidneys were collected after 26 weeks of dietary intervention for identification of fibrosis and study of potential mechanisms. Additional studies were performed in cultured renal fibroblasts.. We observed extensive and diffuse fibrosis in the kidneys of mice given HFD (P < 0.05 vs. standard chow). Fibrosis was associated with enhanced expression of fibronectin, nicotinamide adenine dinucleotide phosphate oxidases and activated p38 and p44/42 mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). There was evidence for accumulation of 4-hydroxynonenal, a lipid peroxidation product, in the kidneys and of ox-LDL in the arteries of LDLr KO mice given HFD. The expression of ox-LDL receptor LOX-1 and of transforming growth factor beta 1 (TGFβ1) was increased in these kidneys. All these changes were more pronounced in LDLr KO mice than in the WT mice. In in vitro studies, treatment of fibroblasts from kidneys of LDLr KO mice with ox-LDL showed intense proliferation and collagen formation (all P < 0.05, fibroblasts from WT mice kidneys). Blockade of p38 MAPK, p44/42 MAPK, or NF-κB significantly attenuated expression of profibrotic signals, collagen formation, and proliferation of fibroblasts.. HFD induces renal fibrosis in LDLr-null mice primarily through activation of the nicotinamide adenine dinucleotide phosphate oxidase MAPK-NF-κB pathway by ox-LDL.

    Topics: Aldehydes; Animals; Cell Proliferation; Cells, Cultured; Collagen; Diet, High-Fat; Fibroblasts; Fibrosis; Kidney Diseases; Lipid Peroxidation; Lipoproteins, LDL; Male; Mice; Mice, Knockout; Mitogen-Activated Protein Kinases; NADPH Oxidases; NF-kappa B; Receptors, LDL; Transforming Growth Factor beta1

2014
Loss of glutathione S-transferase A4 accelerates obstruction-induced tubule damage and renal fibrosis.
    The Journal of pathology, 2012, Volume: 228, Issue:4

    Glutathione transferase isozyme A4 (GSTA4) exhibits high catalytic efficiency to metabolize 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product that has been implicated in the pathogenesis of various chronic diseases. We investigated the role of 4-HNE in the mechanisms of unilateral ureteral obstruction (UUO)-induced fibrosis and its modulation by GSTA4-4 in a mouse model. Our data indicate that after UUO, accumulation of 4-HNE and its adducts were increased in renal tissues, with a concomitant decrease in the expression of GSTA4-4 in mice. As compared to wild-type (WT) mice, UUO caused an increased expression of fibroblast markers in the interstitium of GSTA4 KO mice. Additionally, increased autophagy and tubular cell damage were more severe in UUO-treated GSTA4 KO mice than in WT mice. Furthermore, GSK-3β phosphorylation and expression of Snail, a regulator of E-cadherin and Occludin, was found to be significantly higher in UUO-inflicted GSTA4 KO mice. GSTA4 over-expression prevented 4-HNE-induced autophagy activation, tubular cell damage and Snail nuclear translocation in vitro. The effects of long-term expression of GSTA4 in restoration of UUO-induced damage in mice with the GSTA4 inducible transposon system indicated that release of obstruction after 3 days of UUO resulted in the attenuation of interstitial SMAα and collagen I expression. This transposon-delivered GSTA4 expression also suppressed UUO-induced loss of tubular cell junction markers and autophagy activation. Together, these results indicate that 4-HNE significantly contributes to the mechanisms of tubule injury and fibrosis and that these effects can be inhibited by the enhanced expression of GSTA4-4.

    Topics: Aldehydes; Animals; Autophagy; Cells, Cultured; DNA Transposable Elements; Fibroblasts; Fibrosis; Glutathione Transferase; Intercellular Junctions; Kidney Tubules; Lipid Peroxidation; Male; Mice, Knockout; RNA, Messenger; Snail Family Transcription Factors; Transcription Factors; Ureteral Obstruction

2012
Ramipril attenuates lipid peroxidation and cardiac fibrosis in an experimental model of rheumatoid arthritis.
    Arthritis research & therapy, 2012, Oct-18, Volume: 14, Issue:5

    Recent studies revealed that co-morbidity and mortality due to cardiovascular disease are increased in patients with rheumatoid arthritis (RA) but little is known about factors involved in these manifestations. This study aimed at characterizing the impact of arthritis on oxidative stress status and tissue fibrosis in the heart of rats with adjuvant-induced arthritis (AIA).. AIA was induced with complete Freund's adjuvant in female Lewis rats. Animals were treated by oral administration of vehicle or angiotensin-converting enzyme inhibitor ramipril (10 mg/kg/day) for 28 days, beginning 1 day after arthritis induction. Isolated adult cardiomyocytes were exposed to 10 μM 4-hydroxynonenal (HNE) for 24 hours in the presence or absence of 10 μM ramipril.. Compared to controls, AIA rats showed significant 55 and 30% increase of 4-HNE/protein adducts in serum and left ventricular (LV) tissues, respectively. Cardiac mitochondrial NADP+-isocitrate dehydrogenase (mNADP-ICDH) activity decreased by 25% in AIA rats without any changes in its protein and mRNA expression. The loss of mNADP-ICDH activity was correlated with enhanced accumulation of HNE/mNADP-ICDH adducts as well as with decrease of glutathione and NADPH. Angiotensin II type 1 receptor (AT1R) expression and tissue fibrosis were induced in LV tissues from AIA rats. In isolated cardiomyocytes, HNE significantly decreased mNADP-ICDH activity and enhanced type I collagen and connective tissue growth factor expression. The oral administration of ramipril significantly reduced HNE and AT1R levels and restored mNADP-ICDH activity and redox status in LV tissues of AIA rats. The protective effects of this drug were also evident from the decrease in arthritis scoring and inflammatory markers.. Collectively, our findings disclosed that AIA induced oxidative stress and fibrosis in the heart. The fact that ramipril attenuates inflammation, oxidative stress and tissue fibrosis may provide a novel strategy to prevent heart diseases in RA.

    Topics: Aldehydes; Angiotensin-Converting Enzyme Inhibitors; Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Cells, Cultured; Dinoprostone; Disease Models, Animal; Female; Fibrosis; Lipid Peroxidation; Mitochondria, Heart; Myocardium; Myocytes, Cardiac; Oxidative Stress; Ramipril; Rats; Rats, Inbred Lew; Tumor Necrosis Factor-alpha

2012
Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice.
    American journal of physiology. Heart and circulatory physiology, 2011, Volume: 301, Issue:3

    Sleep apnea syndrome increases the risk of cardiovascular morbidity and mortality. We previously reported that intermittent hypoxia increases superoxide production in a manner dependent on nicotinamide adenine dinucleotide phosphate and accelerates adverse left ventricular (LV) remodeling. Recent studies have suggested that hydrogen (H(2)) may have an antioxidant effect by reducing hydroxyl radicals. In this study, we investigated the effects of H(2) gas inhalation on lipid metabolism and LV remodeling induced by intermittent hypoxia in mice. Male C57BL/6J mice (n = 62) were exposed to intermittent hypoxia (repetitive cycle of 1-min periods of 5 and 21% oxygen for 8 h during daytime) for 7 days. H(2) gas (1.3 vol/100 vol) was given either at the time of reoxygenation, during hypoxic conditions, or throughout the experimental period. Mice kept under normoxic conditions served as controls (n = 13). Intermittent hypoxia significantly increased plasma levels of low- and very low-density cholesterol and the amount of 4-hydroxy-2-nonenal-modified protein adducts in the LV myocardium. It also upregulated mRNA expression of tissue necrosis factor-α, interleukin-6, and brain natriuretic peptide, increased production of superoxide, and induced cardiomyocyte hypertrophy, nuclear deformity, mitochondrial degeneration, and interstitial fibrosis. H(2) gas inhalation significantly suppressed these changes induced by intermittent hypoxia. In particular, H(2) gas inhaled at the timing of reoxygenation or throughout the experiment was effective in preventing dyslipidemia and suppressing superoxide production in the LV myocardium. These results suggest that inhalation of H(2) gas was effective for reducing oxidative stress and preventing LV remodeling induced by intermittent hypoxia relevant to sleep apnea.

    Topics: Administration, Inhalation; Aldehydes; Analysis of Variance; Animals; Cholesterol, LDL; Cholesterol, VLDL; Disease Models, Animal; Dyslipidemias; Fibrosis; Free Radical Scavengers; Gases; Gene Expression Regulation; Heart Diseases; Heart Ventricles; Hemodynamics; Hydrogen; Hypoxia; Interleukin-6; Lipid Metabolism; Male; Mice; Mice, Inbred C57BL; Myocardium; Natriuretic Peptide, Brain; Oxidative Stress; RNA, Messenger; Superoxides; Time Factors; Tumor Necrosis Factor-alpha; Ventricular Remodeling

2011
The effect of antioxidant on development of fibrosis by cisplatin in rats.
    Journal of pharmacological sciences, 2009, Volume: 111, Issue:4

    Cisplatin causes chronic interstitial disease with fibrosis, but the development mechanism of interstitial fibrosis is not yet understood. We examined the effect of an antioxidant, N,N'-diphenyl-1,4-phenylenediamine (DPPD), on development of interstitial fibrosis induced by cisplatin. Cisplatin increased blood urea nitrogen (BUN), plasma creatinine, and elicited glucosuria and enzymuria at 3 days after administration, but these changes were restored to the normal level after 14 days. Type III collagen increased from 7 days after administration of cisplatin and the expansion of the interstitial fibrosis area became evident at 14 days. Sustained renal fibrosis worsened renal function again at 56 days. Administration of DPPD, which was started at 3 days after cisplatin treatment, significantly inhibited the increase in renal type III collagen contents and the expansion of the interstitial fibrosis area without affecting enzymuria and increased BUN. These results indicate that anti-fibrotic action of DPPD is not secondary due to the inhibition of acute renal injury but is rather a direct effect on renal fibrogenesis. DPPD did not prevent the infiltration of macrophages by cisplatin, suggesting that anti-fibrotic action of DPPD was not mediated by the inhibition of inflammatory cellular influx. It is suggested that reactive oxygen species are involved in cisplatin-induced renal interstitial fibrosis.

    Topics: Actins; Aldehydes; Animals; Antioxidants; Cisplatin; Collagen Type III; Fibrosis; Kidney; Kidney Function Tests; Male; Phenylenediamines; Rats; Rats, Sprague-Dawley

2009
Attenuation of oxidative stress and cardiac dysfunction by bisoprolol in an animal model of dilated cardiomyopathy.
    Biochemical and biophysical research communications, 2006, Nov-10, Volume: 350, Issue:1

    Oxidative stress is an important susceptibility factor for dilated cardiomyopathy. We have investigated the effects of bisoprolol, a beta1-selective adrenoceptor blocker, on oxidative stress and the development of cardiac dysfunction in a model of dilated cardiomyopathy. Male TO-2 and control hamsters at 8 weeks of age were treated with bisoprolol (5 mg/kg per day) or vehicle for 4 weeks. Treatment with bisoprolol prevented the progression of cardiac dysfunction in TO-2 hamsters. This drug did not affect the increase in NADPH oxidase activity but prevented the reduction in activity and expression of mitochondrial manganese-dependent superoxide dismutase as well as the increases in the concentrations of interleukin-1beta and tumor necrosis factor-alpha in the left ventricle of TO-2 hamsters. Attenuation of the development of cardiac dysfunction by bisoprolol may thus result in part from normalization of the associated increases in the levels of oxidative stress and pro-inflammatory cytokines in the left ventricle.

    Topics: Aldehydes; Animals; Antioxidants; Bisoprolol; Blood Pressure; Body Weight; Cardiomyopathy, Dilated; Cricetinae; Disease Models, Animal; Echocardiography; Fibrosis; Glutathione; Heart Failure; Heart Rate; Interleukin-1; Isoenzymes; Male; NADPH Oxidases; Organ Size; Oxidative Stress; Superoxide Dismutase; Tumor Necrosis Factor-alpha; Tyrosine; Ventricular Function, Left

2006
Beneficial effect of candesartan on rat diastolic heart failure.
    Journal of pharmacological sciences, 2005, Volume: 98, Issue:4

    In this study, we examined whether an angiotensin II type 1 (AT1)-receptor blocker improves diastolic heart failure (DHF) in Dahl salt-sensitive (DS) rats. DHF was prepared by feeding DS rats on 8% NaCl diet from 7 weeks of age. DHF was estimated with echocardiography by measuring E velocity / A velocity (E/A) of left ventricular inflow. DS rats with established DHF were orally given candesartan (1 mg/kg per day) or vehicle. After 13 days of treatment, candesartan significantly improved DHF, as shown by the reduction of E/A from 4.49 +/- 1.04 to 1.98 +/- 0.54 (P<0.05) and prolonged survival rate more than the vehicle. Cardiac fibrosis, apoptosis, and gene expression were estimated by Sirius Red-staining, TUNEL-staining, and Northern blot analysis, respectively. The improvement of DHF by candesartan was accompanied by the decrease in cardiac hypertrophy, fibrosis, and apoptosis, and the reduction of gene expression of brain natriuretic peptide, collagen I, and monocyte chemoattractant protein-1. Moreover, candesartan decreased cardiac inflammatory cells and reactive oxygen species, estimated by counting ED-1-positive cells and the measurement of 4-hydroxy-2-nonenal staining, respectively. These results indicate that candesartan can improve diastolic dysfunction and may slow the progression of cardiac remodelling in DS rats with established DHF.

    Topics: Aldehydes; Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Benzimidazoles; Biphenyl Compounds; Chemokine CCL2; Collagen Type I; Echocardiography, Doppler; Fibrosis; Gene Expression; Heart Failure; Immunohistochemistry; Myocardium; Natriuretic Peptide, Brain; Rats; Rats, Inbred Dahl; Reactive Oxygen Species; RNA, Messenger; Sodium Chloride, Dietary; Survival Rate; Tetrazoles

2005
Role of 4-hydroxy-2,3-nonenal in the pathogenesis of fibrosis.
    BioFactors (Oxford, England), 2005, Volume: 24, Issue:1-4

    Transient activation of fibroblasts or fibroblast-like cells to proliferate and to produce elevated quantities of extracellular matrix is essential to fibrosis. This activation is regulated by several cytokines produced by various inflammation-associated cells. Among these, transforming growth factor beta1 (TGFbeta1) is considered of major importance. Many studies have shown that lipid peroxidation play a key role in the initiation and progression of fibrosis in different organs. In fact, 4-hydroxy-2,3-nonenal (HNE), the major aldehydic product of lipid peroxidation, is able to induce TGFbeta1 expression and synthesis, and activation of activator protein-1 (AP-1) transcription factor. In this study, using the murine macrophage line J774-A1, we show that these effects are strictly related to the chemical structure of HNE, since neither 2-nonenal nor nonanal are biologically active to the same extent. Moreover, we demonstrate that HNE can indeed contribute to the onset of fibrosis by stimulating AP-1 binding to DNA and consequently inducing TGFbeta1 expression, since thiol-group reagents, such as N-ethylmaleimide and 4-(chloro-mercuri)-benzenesulfonic acid, that down-modulate HNE entrance and localisation inside the cell, prevent both phenomena. The possibility to control fibrogenic cytokine levels by means of antioxidant or dietetic treatments opens new potential pharmacological and nutritional horizons in the treatment of many chronic diseases characterised by excessive fibrosis.

    Topics: Aldehydes; Animals; Cell Line; DNA; Electrophoretic Mobility Shift Assay; Fibrosis; Gene Expression; Lipid Peroxidation; Macrophages; Mice; Proteins; Structure-Activity Relationship; Transcription Factor AP-1

2005
Involvement of lipid peroxidation in spontaneous pancreatitis in WBN/Kob rats.
    Pancreas, 2001, Volume: 22, Issue:4

    To cast light on the mechanisms underlying development of spontaneous pancreatitis lesions, tissues from WBN/Kob rats at various ages were histopathologically and immunohistochemically investigated with special reference to the existence of the lipid peroxidation products 4-hydroxy-2-nonenal (HNE), 4-hydroxy-2-hexenal (HHE), and malondialdehyde (MDA). Male 4-20-week-old WBN/Kob rats were killed to allow sampling of pancreatic tissues, which were fixed in cold acetone and 10% neutral-buffered formalin. and then processed for routine histopathology as well as immunohistochemistry for proteins modified by HNE, HHE, and MDA. Although no remarkable histologic changes were noted in younger animals, edema, hemorrhage, inflammatory cell infiltration, fibrosis, vacuolation of acinar cells, and ductular proliferation were observed in exocrine pancreatic tissue from animals at 10-15 weeks of age. In animals aged 20 weeks, the lesions had progressed remarkably and deposits of hemosiderin were apparent with fibrosis. Immunohistochemical examination for lipid peroxidation product-modified proteins showed HNE and MDA to be negative in all pancreatic tissues, but HHE was positive in the areas involving atrophy of acinar cells and fibrosis in the islets. The results of the present study thus provide support for the conclusion that lipid peroxidation during spontaneous pancreatitis in WBN/Kob rats may possibly be involved in the development of diabetes in this model.

    Topics: Aging; Aldehydes; Amylases; Animals; Edema; Fibrosis; Hemorrhage; Immunohistochemistry; Lipase; Lipid Peroxidation; Male; Malondialdehyde; Pancreas; Pancreatic Ducts; Pancreatitis; Rats; Rats, Inbred Strains; Vacuoles

2001
Development of an animal model of chronic alcohol-induced pancreatitis in the rat.
    American journal of physiology. Gastrointestinal and liver physiology, 2001, Volume: 280, Issue:6

    This study was designed to develop an animal model of alcoholic pancreatitis and to test the hypothesis that the dose of ethanol and the type of dietary fat affect free radical formation and pancreatic pathology. Female Wistar rats were fed liquid diets rich in corn oil (unsaturated fat), with or without a standard or high dose of ethanol, and medium-chain triglycerides (saturated fat) with a high dose of ethanol for 8 wk enterally. The dose of ethanol was increased as tolerance developed, which allowed approximately twice as much alcohol to be delivered in the high-dose group. Serum pancreatic enzymes and histology were normal after 4 wk of diets rich in unsaturated fat, with or without the standard dose of ethanol. In contrast, enzyme levels were elevated significantly by the high ethanol dose. Increases were blunted significantly by dietary saturated fat. Fibrosis and collagen alpha1(I) expression in the pancreas were not detectable after 4 wk of enteral ethanol feeding; however, they were enhanced significantly by the high dose after 8 wk. Furthermore, radical adducts detected by electron spin resonance were minimal with the standard dose; however, the high dose increased carbon-centered radical adducts as well as 4-hydroxynonenal, an index of lipid peroxidation, significantly. Radical adducts were also blunted by approximately 70% by dietary saturated fat. The animal model presented here is the first to demonstrate chronic alcohol-induced pancreatitis in a reproducible manner. The key factors responsible for pathology are the amount of ethanol administered and the type of dietary fat.

    Topics: Aldehydes; Animals; Chronic Disease; Dietary Fats; Disease Models, Animal; Dose-Response Relationship, Drug; Ethanol; Fatty Acids; Female; Fibrosis; Free Radicals; Immunohistochemistry; Liver; Pancreas; Pancreatitis, Alcoholic; Proteins; Rats; Rats, Wistar

2001