4-hydroxy-2-nonenal and Cerebral-Hemorrhage

4-hydroxy-2-nonenal has been researched along with Cerebral-Hemorrhage* in 3 studies

Other Studies

3 other study(ies) available for 4-hydroxy-2-nonenal and Cerebral-Hemorrhage

ArticleYear
Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.
    Neuroscience, 2010, Aug-11, Volume: 169, Issue:1

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation.

    Topics: Administration, Inhalation; Aldehydes; Animals; Antioxidants; Aquaporin 4; Brain Damage, Chronic; Cerebral Hemorrhage; Disease Progression; Drug Evaluation, Preclinical; Extracellular Matrix Proteins; Glucose; Hydrogen; Hyperglycemia; Infarction, Middle Cerebral Artery; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neuroprotective Agents; Random Allocation; Rats; Rats, Sprague-Dawley; Tyrosine

2010
Role of oxidative stress on pathogenesis of hypertensive cerebrovascular lesions.
    Pathology international, 2007, Volume: 57, Issue:3

    The hypertensive rat brain exhibited softening, severe edema and intracerebral hemorrhage. The NO(2) (-) + NO(3) (-) (NOx) level in the hypertensive rat brain was higher than in the normotensive rat brain. Light microscopy demonstrated severe arterial and arteriolar lesions with fibrinoid deposits and medial lesion. After injecting hypertensive rats with nitroblue tetrazolium (NBT), formazan deposits, which are the reaction product of reduction of NBT by superoxide, were observed in the microvessels and nervous tissue around the microvessels of injured brain. Immunohistochemistry showed that copper zinc superoxide dismutase and manganese superoxide dismutase expression of the endothelial cells of hypertensive rats were also upregulated in comparison with normotensive rat endothelial cells. Inducible nitric oxide synthase and endothelial nitric oxide synthase expression in endothelial cells of normotensive rats were strongly positive, whereas the expression in hypertensive rat endothelial cells was weaker. Nitrotyrosine, a biomarker of peroxynitrite, which is a powerful oxidant formed by the reaction of nitric oxide (NO) with superoxide, was found in the microvessels, injured arteries and arterioles and infarcted brain tissue. Deposition of a major aldehydic product of lipid peroxidation, that is, 4-hydroxy-2-nonenal (4-HNE) was found in microvessels, perivascular tissue, and edematous and infarcted brain. Hypertensive cerebrovascular disease is the result of hypertension-induced oxidative stress.

    Topics: Aldehydes; Animals; Arterioles; Brain; Brain Edema; Cerebral Hemorrhage; Cerebrovascular Disorders; Disease Models, Animal; Endothelium, Vascular; Hypertension; Intracranial Arterial Diseases; Male; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitroblue Tetrazolium; Oxidative Stress; Rats; Rats, Wistar; Superoxide Dismutase; Tyrosine; Up-Regulation

2007
4-Hydroxynonenal as a second messenger of free radicals and growth modifying factor.
    Life sciences, 1999, Volume: 65, Issue:18-19

    Immunohistochemical analysis of the distribution of the lipid peroxidation product 4-hydroxynonenal (HNE) in the brain of baboons exposed to experimental hemorrhagic traumatic shock or sepsis showed that systemic oxidative stress and the thereby generated HNE affect the blood:brain barrier and the regulation of cerebral blood flow determining secondary brain damage. Similarly, HNE was determined during ischemia in the brain blood vessels of rats exposed to ischemia/reperfusion injury of the brain. After reperfusion, HNE disappeared from the blood vessels but remained in neurones and in glial cells. Since HNE modulates cell proliferation and differentiation (including proto-oncogene expression), it is postulated that HNE might have prominent local and systemic effects that are not only harmful but beneficial, too, determining the outcome of various pathophysiological conditions based on oxidative stress.

    Topics: Aldehydes; Animals; Antibodies, Monoclonal; Brain; Cell Division; Cerebral Hemorrhage; Free Radicals; HeLa Cells; Humans; Immunohistochemistry; Ischemic Attack, Transient; Muscle, Smooth, Vascular; Papio; Proto-Oncogene Mas; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Second Messenger Systems; Sepsis; Shock; Thymidine

1999