4-hydroxy-2-nonenal has been researched along with Autistic-Disorder* in 4 studies
4 other study(ies) available for 4-hydroxy-2-nonenal and Autistic-Disorder
Article | Year |
---|---|
The link between intraneuronal N-truncated amyloid-β peptide and oxidatively modified lipids in idiopathic autism and dup(15q11.2-q13)/autism.
Autism is a neurodevelopmental disorder of unknown etiopathogenesis associated with structural and functional abnormalities of neurons and increased formation of reactive oxygen species. Our previous study revealed enhanced accumulation of amino-terminally truncated amyloid-β (Aβ) in brain neurons and glia in children and adults with autism. Verification of the hypothesis that intraneuronal Aβ may cause oxidative stress was the aim of this study.. The relationships between neuronal Aβ and oxidative stress markers-4-hydroxy-2-nonenal (HNE) and malondialdehyde (MDA)-were examined in the frontal cortex from individuals aged 7-32 years with idiopathic autism or with chromosome 15q11.2-q13 duplications (dup(15)) with autism, and age-matched controls. Quantification of confocal microscopy images revealed significantly higher levels of neuronal N-truncated Aβ and HNE and MDA in idiopathic autism and dup(15)/autism than in controls. Lipid peroxidation products were detected in all mitochondria and lipofuscin deposits, in numerous autophagic vacuoles and lysosomes, and in less than 5% of synapses. Neuronal Aβ was co-localized with HNE and MDA, and increased Aβ levels correlated with higher levels of HNE and MDA.. The results suggest a self-enhancing pathological process in autism that is initiated by intraneuronal deposition of N-truncated Aβ in childhood. The cascade of events includes altered APP metabolism and abnormal intracellular accumulation of N-terminally truncated Aβ which is a source of reactive oxygen species, which in turn increase the formation of lipid peroxidation products. The latter enhance Aβ deposition and sustain the cascade of changes contributing to metabolic and functional impairments of neurons in autism of an unknown etiology and caused by chromosome 15q11.2-q13 duplication. Topics: Adolescent; Adult; Aldehydes; Amyloid beta-Peptides; Autistic Disorder; Brain; Child; Chromosome Aberrations; Chromosomes, Human, Pair 15; Female; Humans; Intellectual Disability; Lipid Peroxidation; Lysosomes; Male; Malondialdehyde; Mitochondria; Neurons; Synapses; Vacuoles; Young Adult | 2013 |
Erythrocyte shape abnormalities, membrane oxidative damage, and β-actin alterations: an unrecognized triad in classical autism.
Autism spectrum disorders (ASDs) are a complex group of neurodevelopment disorders steadily rising in frequency and treatment refractory, where the search for biological markers is of paramount importance. Although red blood cells (RBCs) membrane lipidomics and rheological variables have been reported to be altered, with some suggestions indicating an increased lipid peroxidation in the erythrocyte membrane, to date no information exists on how the oxidative membrane damage may affect cytoskeletal membrane proteins and, ultimately, RBCs shape in autism. Here, we investigated RBC morphology by scanning electron microscopy in patients with classical autism, that is, the predominant ASDs phenotype (age range: 6-26 years), nonautistic neurodevelopmental disorders (i.e., "positive controls"), and healthy controls (i.e., "negative controls"). A high percentage of altered RBCs shapes, predominantly elliptocytes, was observed in autistic patients, but not in both control groups. The RBCs altered morphology in autistic subjects was related to increased erythrocyte membrane F2-isoprostanes and 4-hydroxynonenal protein adducts. In addition, an oxidative damage of the erythrocyte membrane β-actin protein was evidenced. Therefore, the combination of erythrocyte shape abnormalities, erythrocyte membrane oxidative damage, and β-actin alterations constitutes a previously unrecognized triad in classical autism and provides new biological markers in the diagnostic workup of ASDs. Topics: Actins; Adolescent; Adult; Aldehydes; Autistic Disorder; Child; Child, Preschool; Erythrocyte Count; Erythrocyte Membrane; Erythrocytes; Female; Humans; Intelligence; Male; Membrane Proteins; Oxidative Stress | 2013 |
Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism.
A link between oxidative stress and autism spectrum disorders (ASDs) remains controversial with opposing views on its role in the pathogenesis of the disease. We investigated for the first time the levels of non-protein-bound iron (NPBI), a pro-oxidant factor, and 4-hydroxynonenal protein adducts (4-HNE PAs), as a marker of lipid peroxidation-induced protein damage, in classic autism. Patients with classic autism (n=20, mean age 12.0±6.2years) and healthy controls (n=18, mean age 11.7±6.5years) were examined. Intraerythrocyte and plasma NPBI were measured by high performance liquid chromatography (HPLC), and 4-HNE PAs in erythrocyte membranes and plasma were detected by Western blotting. The antioxidant defences were evaluated as erythrocyte glutathione (GSH) levels using a spectrophotometric assay. Intraerythrocyte and plasma NPBI levels were significantly increased (1.98- and 3.56-folds) in autistic patients, as compared to controls (p=0.0019 and p<0.0001, respectively); likewise, 4-HNE PAs were significantly higher in erythrocyte membranes and in plasma (1.58- and 1.6-folds, respectively) from autistic patients than controls (p=0.0043 and p=0.0001, respectively). Erythrocyte GSH was slightly decreased (-10.34%) in patients compared to controls (p=0.0215). Our findings indicate an impairment of the redox status in classic autism patients, with a consequent imbalance between oxidative stress and antioxidant defences. Increased levels of NPBI could contribute to lipid peroxidation and, consequently, to increased plasma and erythrocyte membranes 4-HNE PAs thus amplifying the oxidative damage, potentially contributing to the autistic phenotype. Topics: Adolescent; Adult; Aldehydes; Autistic Disorder; Blotting, Western; Child; Child, Preschool; Chromatography, High Pressure Liquid; Diagnostic and Statistical Manual of Mental Disorders; Erythrocyte Membrane; Erythrocytes; Female; Glutathione; Humans; Intelligence Tests; Male; Neuropsychological Tests; Nonheme Iron Proteins; Oxidative Stress; Plasma; Young Adult | 2013 |
Succinylpurinemic autism: increased sensitivity of defective adenylosuccinate lyase towards 4-hydroxy-2-nonenal.
We studied the effect of trans-4-hydroxy-2-nonenal on the wild-type human adenylosuccinate lyase and on the enzyme from a patient compound-heterozygous for two missense mutations (P75A/D397Y; McKusick 103050.0003/103050.0004). Both the enzymes were inhibited by 10-50 microM trans-4-hydroxy-2-nonenal in a concentration-dependent manner by means of a mixed-type co-operative mechanism. A significantly stronger inhibition was noticed in the presence of the defective enzyme. Nonanal and trans-2,3-nonenal inhibited the enzymes to a less extent and at about 10-times higher concentrations. Hydroxylamine reversed the inhibition by trans-4-hydroxy-2-nonenal, trans-2,3-nonenal or nonanal in the case of the wild-type enzyme, but it was ineffective to reverse the inhibition by trans-4-hydroxy-2-nonenal on the defective enzyme. Dithiothreitol slightly decreased the inhibition exerted by trans-4-hydroxy-2-nonenal on both the wild-type and the defective adenylosuccinate lyase, while it did not produce practically any change in the presence of trans-2,3-nonenal or nonanal. Topics: Adenylosuccinate Lyase; Aldehydes; Autistic Disorder; Cysteine Proteinase Inhibitors; Dithiothreitol; Dose-Response Relationship, Drug; Humans; Hydroxylamine; Kinetics; Purines | 2000 |