4-hydroxy-2-nonenal has been researched along with Atrophy* in 3 studies
3 other study(ies) available for 4-hydroxy-2-nonenal and Atrophy
Article | Year |
---|---|
Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm.
Prolonged mechanical ventilation (MV) results in diaphragmatic weakness due to fiber atrophy and contractile dysfunction. Recent work reveals that activation of the proteases calpain and caspase-3 is required for MV-induced diaphragmatic atrophy and contractile dysfunction. However, the mechanism(s) responsible for activation of these proteases remains unknown. To address this issue, we tested the hypothesis that oxidative stress is essential for the activation of calpain and caspase-3 in the diaphragm during MV. Cause-and-effect was established by prevention of MV-induced diaphragmatic oxidative stress using the antioxidant Trolox. Treatment of animals with Trolox prevented MV-induced protein oxidation and lipid peroxidation in the diaphragm. Importantly, the Trolox-mediated protection from MV-induced oxidative stress prevented the activation of calpain and caspase-3 in the diaphragm during MV. Furthermore, the avoidance of MV-induced oxidative stress not only averted the activation of these proteases but also rescued the diaphragm from MV-induced diaphragmatic myofiber atrophy and contractile dysfunction. Collectively, these findings support the prediction that oxidative stress is required for MV-induced activation of calpain and caspase-3 in the diaphragm and are consistent with the concept that antioxidant therapy can retard MV-induced diaphragmatic weakness. Topics: Aldehydes; Animals; Antioxidants; Atrophy; Calpain; Caspase 3; Chromans; Diaphragm; Electric Stimulation; Enzyme Activation; Female; Isometric Contraction; Lipid Peroxidation; Microfilament Proteins; Muscle Weakness; Oxidative Stress; Protein Carbonylation; Rats; Rats, Sprague-Dawley; Respiration, Artificial; Vesicular Transport Proteins | 2010 |
Limited Alzheimer-type neurodegeneration in experimental obesity and type 2 diabetes mellitus.
Alzheimer's disease (AD) is associated with brain insulin resistance and insulin deficiency, whereas Type 2 diabetes mellitus (T2DM) is associated with peripheral insulin resistance. This study assesses the degree to which T2DM causes AD-type neurodegeneration. In a C57BL/6 mouse model of obesity and T2DM, we characterized the histopathology, gene expression, and insulin and insulin-like growth factor (IGF)-receptor binding in temporal lobe. High fat diet (HFD) feeding for 16 weeks doubled mean body weight, caused T2DM, and marginally reduced mean brain weight. These effects were associated with significantly increased levels of tau, IGF-I receptor, insulin receptor substrate-1 (IRS-1), IRS-4, ubiquitin, glial fibrillary acidic protein, and 4-hydroxynonenol, and decreased expression of beta-actin. HFD feeding also caused brain insulin resistance manifested by reduced BMAX for insulin receptor binding, and modestly increased brain insulin gene expression. However, HFD-fed mouse brains did not exhibit AD histopathology, increases in amyloid-beta or phospho-tau, or impairments in IGF signaling or acetylcholine homeostasis. Obesity and T2DM cause brain atrophy with insulin resistance, oxidative stress, and cytoskeleton degradation, but the absence of many features that typify AD suggests that obesity and T2DM may contribute to, but are not sufficient to cause AD. Topics: Actins; Adaptor Proteins, Signal Transducing; Aldehydes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Atrophy; Brain; Diabetes Mellitus, Type 2; DNA Primers; Enzyme-Linked Immunosorbent Assay; Gene Expression; Glial Fibrillary Acidic Protein; Insulin Receptor Substrate Proteins; Insulin Resistance; Insulin-Like Growth Factor I; Mice; Mice, Inbred C57BL; Nerve Degeneration; Obesity; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Ubiquitin | 2008 |
Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer's disease.
In geriatric dogs, Alzheimer-like behavior is frequently observed. This behavior has been classified by several authors using questionnaires and a correlation has been described between cognitive dysfunctions and Alzheimer-like pathology. In the present study, cognitive performance was correlated with brain pathology for 30 dogs of varying ages. Within these animals, two age-matched groups of old dogs with and without behavioral changes were compared. The behavioral changes were analyzed and scored with questionnaires and necropsy was performed to rule out any other cause for changed behavior. Measurements, (immuno)-histochemical staining and fluorescence microscopy were used to detect cortex atrophy, amyloid, rest-products of oxidative damage, demyelination and accumulations of macrophages in the brains of these dogs. Spearman rank correlation coefficients (r) were calculated and adjusted according to Bonferonni. In the whole group (young to very old dogs), the age of the animal showed a significant correlation with various behavioral changes (r = 0.7 to 0.9, P < 0.01). The dementia score correlated significantly (r = 0.6 to 0.8, P < 0.01) with all the brain lesions studied, except one, i.e. demyelination (r = -0.4, P > 0.05). These results suggest that a questionnaire can be used to diagnose Alzheimer-like changes in canine practice. Oxidative damage on a cellular and a nuclear level plays an important role in behavior changes. Topics: 8-Hydroxy-2'-Deoxyguanosine; Age Factors; Aging; Aldehydes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Atrophy; Behavior, Animal; Cerebral Cortex; Cognition Disorders; Congo Red; Demyelinating Diseases; Deoxyguanosine; Disease Models, Animal; Dogs; Female; Immunohistochemistry; Lipofuscin; Male; Statistics, Nonparametric | 2006 |