4-hydroxy-2-butenoic-acid and Disease-Models--Animal

4-hydroxy-2-butenoic-acid has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for 4-hydroxy-2-butenoic-acid and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Improvement in γ-hydroxybutyrate-induced contextual fear memory deficit by systemic administration of NCS-382.
    Neuroreport, 2016, 06-15, Volume: 27, Issue:9

    Low, nonsedative doses of γ-hydroxybutyric acid (GHB) produce short-term anterograde amnesia in humans and memory impairments in experimental animals. We have previously shown that acute systemic treatment of GHB in adolescent female rats impairs the acquisition, but not the expression, of contextual fear memory while sparing both the acquisition and the expression of auditory cued fear memory. In the brain, GHB binds to specific GHB-binding sites as well as to γ-aminobutyric acid type B (GABAB) receptors. Although many of the behavioral effects of GHB at high doses have been attributed to its effects on the GABAB receptor, it is unclear which receptor mediates its relatively low-dose memory-impairing effects. The present study examined the ability of the putative GHB receptor antagonist NCS-382 to block the disrupting effects of GHB on fear memory in adolescent rat. Groups of rats received either a single dose of NCS-382 (3-10 mg/kg, intraperitoneally) or vehicle, followed by an injection of either GHB (100 mg/kg, intraperitoneally) or saline. All rats were trained in the fear paradigm, and tested for contextual fear memory and auditory cued fear memory. NCS-382 dose-dependently reversed deficits in the acquisition of contextual fear memory induced by GHB in adolescent rats, with 5 mg/kg of NCS-382 maximally increasing freezing to the context compared with the group administered GHB alone. When animals were tested for cued fear memory, treatment groups did not differ in freezing responses to the tone. These results suggest that low-dose amnesic effects of GHB are mediated by GHB receptors.

    Topics: Animals; Anticonvulsants; Benzocycloheptenes; Conditioning, Classical; Disease Models, Animal; Dose-Response Relationship, Drug; Fear; Female; Freezing Reaction, Cataleptic; Hydroxybutyrates; Memory Disorders; Rats; Rats, Sprague-Dawley

2016