4-aminopyrrolidine-2-4-dicarboxylic-acid has been researched along with Seizures* in 5 studies
5 other study(ies) available for 4-aminopyrrolidine-2-4-dicarboxylic-acid and Seizures
Article | Year |
---|---|
2R,4R-APDC, a Metabotropic Glutamate Receptor Agonist, Reduced Neuronal Apoptosis by Upregulating MicroRNA-128 in a Rat Model After Seizures.
This study aimed to study the protective effect of (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC), a selective metabotropic glutamate receptor agonist, against hippocampal neuronal apoptosis induced by seizures in a rat model of pilocarpine-induced epilepsy. The Morris water maze test was used to assess the spatial memory abilities of epileptic rats with or without 2R,4R-APDC treatment. TUNEL assay was performed to examine neuronal apoptosis in hippocampus. Western blot was conducted to evaluate changes in the levels of caspase-3 and caspase-9 in hippocampus. Real-time PCR was used to determine the levels of microRNA-128 (miR-128) in hippocampus. The results of the Morris water maze test showed that the 2R,4R-APDC treatment reduced the escape latencies and swimming lengths of rats after seizures. The TUNEL assay showed that 2R,4R-APDC significantly counteracted seizure-induced cell apoptosis. The western blot confirmed this finding, demonstrating that the levels of cleaved caspase-3 and cleaved caspase-9 were potently decreased by 2R,4R-APDC in rat hippocampus after seizures. In addition, 2R,4R-APDC upregulated miR-128 expression levels in the hippocampus. A miR-128 mimic or inhibitor decreased or increased the percentage of TUNEL-positive cells in rats after seizures and 2R,4R-APDC treatment, respectively. The levels of both cleaved caspase-3 and cleaved caspase-9 were decreased in hippocampus exposed to the miR-128 mimic, whereas they were markedly increased in miR-128 inhibitor-treated hippocampus. In conclusion, 2R,4R-APDC protected hippocampal cells from cell apoptosis after seizures, possibly by upregulating miR-128. Topics: Animals; Animals, Newborn; Disease Models, Animal; Excitatory Amino Acid Agonists; Hippocampus; Male; Memory; MicroRNAs; Proline; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Seizures; Up-Regulation | 2018 |
Brain superoxide anion formation in immature rats during seizures: protection by selected compounds.
The widely-held assumption was that oxidative stress does not occur during seizures in the immature brain. The major finding of the present study concerns evidence of oxidative stress in the brain of immature rats during seizures induced by DL-homocysteic acid. Seizures were induced in 12-day-old rats by bilateral intracerebroventricular infusion of DL-homocysteic acid (DL-HCA, 600 nmol/side) and oxidative stress was evaluated by in situ detection of superoxide anion (O(2)·(-)). Using hydroethidine (Het) method, the fluorescent signal of the oxidized products of Het (reflecting O(2)·(-) production) significantly increased (by 50%-60%) following 60 min lasting seizures in all the studied structures, namely CA1, CA3 and dentate gyrus of the hippocampus, cerebral cortex and thalamus. The enhanced O(2)·(-) production was substantially attenuated or completely prevented by substances providing an anticonvulsant effect, namely by a competitive NMDA receptor antagonist AP7, a highly selective and potent group II metabotropic glutamate receptor (mGluR) agonist 2R,4R-APDC and highly selective group III mGluR, subtype 8 agonist (S)-3,4-DCPG. Complete protection was achieved by two SOD mimetics Tempol and MnTMPYP which strongly suggest that the increased fluorescent signal reflects O(2)·(-) formation. In addition, both scavengers provided a partial protection against brain damage associated with the present model of seizures. Signs of neuronal degeneration, as evaluated by Fluoro-Jade B staining, were detected at 4h following the onset of seizures. The present findings thus suggest that the increased superoxide generation precedes neuronal degeneration and may thus play a causative role in neuronal injury. Occurrence of oxidative stress in brain of immature rats during seizures, as demonstrated in the present study, can have a clinical relevance for a novel approach to the treatment of epilepsy in children, suggesting that substances with antioxidant properties combined with the conventional therapies might provide a beneficial effect. Topics: 2-Amino-5-phosphonovalerate; Animals; Animals, Newborn; Anticonvulsants; Brain; Disease Models, Animal; Homocysteine; Infusions, Intraventricular; Male; Metalloporphyrins; Proline; Rats; Rats, Wistar; Seizures; Statistics, Nonparametric; Superoxides; Time Factors | 2012 |
Seizures induced in immature rats by homocysteic acid and the associated brain damage are prevented by group II metabotropic glutamate receptor agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate.
The present study has examined the anticonvulsant and neuroprotective effect of group II metabotropic glutamate receptor (mGluR) agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC) in the model of seizures induced in immature 12-day-old rats by bilateral intracerebroventricular infusion of dl-homocysteic acid (DL-HCA, 600 nmol/side). For biochemical analyses, rat pups were sacrificed during generalized clonic-tonic seizures, approximately 45-50 min after infusion. Comparable time intervals were used for sacrificing the pups which had received 2R,4R-APDC. Low doses of 2R,4R-APDC (0.05 nmol/side) provided a pronounced anticonvulsant effect which was abolished by pretreatment with a selective group II mGluR antagonist LY341495. Generalized clonic-tonic seizures were completely suppressed and cortical energy metabolite changes which normally accompany these seizures were either normalized (decrease of glucose and glycogen) or markedly reduced (an accumulation of lactate). EEG recordings support the marked anticonvulsant effect of 2R,4R-APDC, nevertheless, this was only partial. In spite of the absence of obvious motor phenomena, isolated spikes or even short periods of partial ictal activity could be observed. Isolated spikes could also be seen in some animals after application of 2R,4R-APDC alone, reflecting most likely subclinical proconvulsant activity of this agonist. The neuroprotective effect of 2R,4R-APDC was evaluated after 24 h and 6 days of survival following DL-HCA-induced seizures. Massive neuronal degeneration, as revealed by Fluoro-Jade B staining, was observed in a number of brain regions following infusion of DL-HCA alone (seizure group), whereas 2R,4R-APDC pretreatment provided substantial neuroprotection. The present findings support the possibility that group II mGluRs are a promising target for a novel approach to treating epilepsy. Topics: Amino Acids; Animals; Animals, Newborn; Anticonvulsants; Behavior, Animal; Brain; Brain Chemistry; Brain Injuries; Dose-Response Relationship, Drug; Drug Interactions; Electroencephalography; Excitatory Amino Acid Antagonists; Fluoresceins; Fluorescent Dyes; Functional Laterality; Glucose; Glycogen; Homocysteine; Lactic Acid; Male; Nerve Degeneration; Organic Chemicals; Proline; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Seizures; Time Factors; Xanthenes | 2005 |
Attenuation of seizures induced by homocysteic acid in immature rats by metabotropic glutamate group II and group III receptor agonists.
Previous studies demonstrated that selected agonists for metabotropic glutamate group II and group III receptors can provide protection against seizures in adult animals. The present study has examined the potential effect of some of these compounds on seizures induced in immature rats by intracerebroventricular infusion of DL-homocysteic acid (DL-HCA, 600 nmol/side). Rat pups were sacrificed during generalised clonic-tonic seizures, 50--60 min after infusion. Comparable time intervals were used for sacrificing the pups which had received the protective drugs. The anticonvulsant effect was evaluated according to the suppression of behavioural manifestations of seizures and the protection of energy metabolite changes which normally accompany these seizures (large decreases of glucose and glycogen, and approximately 7- to 10-fold accumulation of lactate). Partial protection was exhibited by group II mGluR agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV, 0.6 nmol) and this effect was abolished after pretreatment with an antagonist for group II mGluRs (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG, 100 nmol). In high doses (5--100 nmol), however, DCG IV evoked seizures which were prevented by AP7, suggesting that the convulsant effect was mediated by interaction with NMDA receptors. A pronounced anticonvulsant effect against DL-HCA-induced seizures was achieved with low doses of a highly selective group II mGluR agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC, 0.6 nmol), group II agonist and group I mGluR antagonist (S)-4-carboxy-3-hydroxyphenylglycine ((S)-4-C3HPG, 0.6 nmol) and group III mGluR agonist (RS)-1-amino-3-(phosphonomethylene) cyclobutane-carboxylic acid (32 nmol). Generalised clonic--tonic seizures were completely suppressed and the metabolic changes were markedly ameliorated, there being only a 1.5-, 2- and 2.5-fold rise of lactate, respectively. Higher doses of (S)-4-C3HPG (1--100 nmol) were, however, less anticonvulsant than low doses. The present results have confirmed that mGluRs may be considered a potential target for treatment of epilepsy. Topics: Animals; Animals, Newborn; Anticonvulsants; Brain; Cyclobutanes; Cyclopropanes; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Agonists; Glycine; Homocysteine; Male; Neuroprotective Agents; Organophosphorus Compounds; Proline; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Seizures | 2001 |
Synthesis of the four isomers of 4-aminopyrrolidine-2,4-dicarboxylate: identification of a potent, highly selective, and systemically-active agonist for metabotropic glutamate receptors negatively coupled to adenylate cyclase.
The four isomers of 4-aminopyrrolidine-2,4-dicarboxylate (APDC) were prepared and evaluated for their effects at glutamate receptors in vitro. (2R,4R)-APDC (2a), an aza analog of the nonselective mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (1S,3R)-ACPD, 1), was found to possess relatively high affinity for metabotropic glutamate receptors (mGluRs) (ACPD-sensitive [3H]glutamate binding IC50 = 6.49 +/- 1.21 microM) with no effects on radioligand binding to NMDA, AMPA, or kainate receptors up to 100 microM. None of the other APDC isomers showed significant mGluR binding affinity, indicating that this interaction is highly stereospecific. Both 1 and 2a were effective in decreasing forskolin-stimulated cAMP formation in the adult rat cerebral cortex (EC50 = 8.17 +/- 2.21 microM for 1; EC50 = 14.51 +/- 5.54 microM for 2a); however, while 1 was also effective in stimulating basal tritiated inositol monophosphate production in the neonatal rat cerebral cortex (EC50 = 27.7 +/- 5.2 microM), 2a (up to 100 microM) was ineffective in stimulating phosphoinositide hydrolysis in this tissue preparation, further supporting our previous observations that 2a is a highly selective agonist for mGluRs negatively coupled to adenylate cyclase. Microelectrophoretic application of either 1 or 2a to intact rat spinal neurons produced an augmentation of AMPA-induced excitation (95 +/- 10% increase for 1, 52 +/- 6% increase for 2a). Intracerebral injection of 1 (400 nmol) produced characteristic limbic seizures in mice which are not mimicked by 2a (200-1600 nmol, ic). However, the limbic seizures induced by 1 were blocked by systemically administered 2a in a dose-dependent manner (EC50 = 271 mg/kg, ip). It is concluded that (2R,4R)-APDC (2a) is a highly selective, systemically-active agonist of mGluRs negatively coupled to adenylate cyclase and that selective activation of these receptors in vivo can result in anticonvulsant effects. Topics: Adenylyl Cyclases; Animals; Animals, Newborn; Anticonvulsants; Cerebral Cortex; Colforsin; Cyclic AMP; Excitatory Amino Acid Agonists; Glutamic Acid; Humans; Hydrogen Bonding; Limbic System; Mice; Models, Molecular; Molecular Structure; Proline; Rats; Receptors, Metabotropic Glutamate; Seizures; Spinal Cord; Stereoisomerism | 1996 |