4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and Alkalosis

4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid has been researched along with Alkalosis* in 3 studies

Other Studies

3 other study(ies) available for 4-acetamido-4--isothiocyanatostilbene-2-2--disulfonic-acid and Alkalosis

ArticleYear
Sarcolemmal mechanisms for pHi recovery from alkalosis in the guinea-pig ventricular myocyte.
    The Journal of physiology, 1998, Jun-01, Volume: 509 ( Pt 2)

    1. The mechanism of pHi recovery from an intracellular alkali load (induced by acetate prepulse or by reduction/removal of ambient PCO2) was investigated using intracellular SNARF fluorescence in the guinea-pig ventricular myocyte. 2. In Hepes buffer (pHo 7.40), pHi recovery was inhibited by removal of extracellular Cl-, but not by removal of Na+o or elevation of K+o. Recovery was unaffected by the stilbene drug DIDS (4,4-diisothiocyanatostilbene-disulphonic acid), but was slowed dose dependently by the stilbene drug DBDS (dibenzamidostilbene-disulphonic acid). 3. In 5 % CO2/HCO3- buffer (pHo 7.40), pHi recovery was faster than in Hepes buffer. It consisted of an initial rapid recovery phase followed by a slow phase. Much of the rapid phase has been attributed to CO2-dependent buffering. The slow phase was inhibited completely by Cl-o removal but not by Na+o removal or K+o elevation. 4. At a test pHi of 7.30 in CO2/HCO3- buffer, the slow phase was inhibited 70 % by DIDS. The mean DIDS-inhibitable acid influx was equivalent in magnitude to the HCO3--stimulated acid influx. Similarly, the DIDS-insensitive influx was equivalent to that estimated in Hepes buffer. 5. We conclude that two independent sarcolemmal acid-loading carriers are stimulated by a rise of pHi and account for the slow phase of recovery from an alkali load. The results are consistent with activation of a DIDS-sensitive Cl--HCO3- anion exchanger (AE) to produce HCO3- efflux, and a DIDS-insensitive Cl--OH- exchanger (CHE) to produce OH- efflux. H+-Cl- co-influx as the alternative configuration for CHE is not, however, excluded. 6. The dual acid-loading system (AE plus CHE), previously shown to be activated by a fall of extracellular pH, is thus activated by a rise of intracellular pH. Activity of the dual-loading system is therefore controlled by pH on both sides of the cardiac sarcolemma.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Acetates; Alkalosis; Animals; Benzopyrans; Cells, Cultured; Chlorides; Fluorescent Dyes; Guinea Pigs; Heart; Heart Ventricles; HEPES; Hydrogen-Ion Concentration; Kinetics; Myocardium; Sarcolemma; Sodium

1998
The regulation of pH in the central nervous system.
    Canadian journal of physiology and pharmacology, 1992, Volume: 70 Suppl

    The pHi regulation from intracellular acidosis in the central nervous system appears to be mediated by mechanisms driven by the large inwardly directed Na+ gradient. The involvement of these mechanisms in pHi regulation of neurones and glial cells has been investigated in the leech central nervous system using ion-selective microelectrodes. For recovery from acidification, there appear to be three separate mechanisms: Na+/H+ exchange, Na(+)-dependent Cl-/HCO3- exchange, and Na+-HCO3- cotransport. All three mechanisms have a profound effect on the maintenance of pHi homeostasis in glial cells; whereas in leech neurones, as in other neuronal cells studied previously, the predominant mechanisms are Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange. In addition to acid extrusion mechanisms we also found evidence for Na(+)-independent Cl-/HCO3- exchange. At alkaline pHi this exchanger may mediate some of the pHi recovery from intracellular alkalinization.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; Acidosis; Alkalosis; Animals; Bicarbonates; Buffers; Central Nervous System; Electrophysiology; Ganglia; Hydrogen-Ion Concentration; In Vitro Techniques; Ion Exchange; Leeches; Microelectrodes; Neurons; Neurotransmitter Agents; Sodium

1992
Intracellular alkalosis induced by increasing extracellular potassium. Ionic dependence and effects of amiloride and DIDS.
    Mineral and electrolyte metabolism, 1990, Volume: 16, Issue:4

    The intracellular alkalinization produced when extracellular potassium concentration is increased above its normal levels was studied in the rat diaphragm muscle by determination of the steady-state distribution of [14C]-5,5-dimethyl-2,4-oxazolidinedione (DMO). Replacement of external Na+ with sucrose and Mg2+ or N-methyl-D-glucamine prevented the rise in intracellular pH. Amiloride (1 mM) also abolished the elevation of intracellular pH, while the removal of external Cl- (replaced by gluconate) or addition of 0.1 mM 4-acetamido-4'-diisothyocyanostilbene-2,2-disulfonic acid (DIDS) did not prevent intracellular alkalinization from taking place. These results suggest that in the rat diaphragm muscle a Na(+)-dependent, amiloride-sensitive transport mechanism, perhaps Na+/H+ exchange, plays a major role in the K(+)-induced intracellular alkalinization. This mechanism might account for the metabolic acidosis produced by hyperkalemia.

    Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; Alkalosis; Amiloride; Animals; Cell Membrane; Chlorides; Diaphragm; Hydrogen-Ion Concentration; Male; Muscles; Potassium; Rats; Rats, Inbred Strains; Sodium

1990