4-5-diaminofluorescein and Hyperglycemia

4-5-diaminofluorescein has been researched along with Hyperglycemia* in 2 studies

Other Studies

2 other study(ies) available for 4-5-diaminofluorescein and Hyperglycemia

ArticleYear
High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.
    American journal of physiology. Renal physiology, 2004, Volume: 287, Issue:3

    Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose. Immunofluorescence identified only eNOS in normal mouse glomeruli. Measurements of glomerular NO concentration with NO-sensitive fluorescent dye (4,5-diaminofluorescein diacetate) using confocal microscopy and NO-sensitive microelectrodes verified that resting glomeruli had active production of NO that was inhibited by N(G)-nitro-L-arginine methyl ester. High-concentration (20-30 mM) D-glucose inhibited 60-70% of the NO production within 15-30 min; L-glucose at the same concentration did not have any effect. Inhibition of PKC-beta with 100 nM ruboxistaurin prevented eNOS suppression in high-glucose media. Activation of PKC with 100 nM phorbol ester also suppressed the glomerular NO concentration. We concluded that eNOS in the renal glomerular capillary endothelial cells is suppressed by activity of PKC at high-glucose concentrations comparable to those in diabetic animals and humans. The consequence is a rapid decline in the generation of NO in the glomerular endothelial cells in the presence of a high concentration of glucose.

    Topics: Animals; Enzyme Inhibitors; Fluorescein; Glucose; Hyperglycemia; In Vitro Techniques; Indicators and Reagents; Kidney Glomerulus; Male; Mice; Mice, Inbred ICR; Microelectrodes; Microscopy, Confocal; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Protein Kinase C; Protein Kinase C beta

2004
Hyperglycemic switch from mitochondrial nitric oxide to superoxide production in endothelial cells.
    American journal of physiology. Heart and circulatory physiology, 2002, Volume: 283, Issue:5

    The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium.

    Topics: Cells, Cultured; Endothelium, Vascular; Fluorescein; Humans; Hyperglycemia; Indicators and Reagents; Mitochondria; Nitric Oxide; Nitric Oxide Synthase; Superoxides; Umbilical Veins

2002