4-(5-benzo(1-3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide has been researched along with Inflammation* in 9 studies
1 review(s) available for 4-(5-benzo(1-3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide and Inflammation
Article | Year |
---|---|
Targeting the immunity protein kinases for immuno-oncology.
With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare. Topics: Humans; Immune System; Immunotherapy; Inflammation; Neoplasms; Protein Kinase Inhibitors | 2019 |
8 other study(ies) available for 4-(5-benzo(1-3)dioxol-5-yl-4-pyridin-2-yl-1h-imidazol-2-yl)benzamide and Inflammation
Article | Year |
---|---|
Astragaloside IV alleviates lung inflammation in Klebsiella pneumonia rats by suppressing TGF-β1/Smad pathway.
Astragaloside IV is a biologically active substance derived from the traditional Chinese medicine Astragalus mambranaceus Bunge, and has antioxidant, anti-inflammatory, and anti-apoptotic properties. In this study, we aimed to investigate the effects of astragaloside IV on Klebsiella pneumonia rats and the underlying mechanisms. Klebsiella pneumoniae (K. pneumoniae) rats were treated with different dosages of astragaloside IV (5, 10, and 20 mg/kg) by intragastric administration. The levels of pro-inflammatory cytokines interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in bronchoalveolar lavage fluid (BALF) were determined. Pathological changes of lung tissue were inspected by HE staining. The expression of transforming growth factor (TGF)-β1 in lung tissue was determined with immunohistochemistry, and the expression levels of TGF-β1, p-Smad2/Smad2, p-Smad3/Smad3, IκBα/p-IκBα, and p65/p-p65 in lung tissue were determined by western blot. The mechanism was further investigated with TGF-β1 inhibitor SB-431542. Astragaloside IV reduced the elevated levels of pro-inflammatory cytokines caused by K. pneumoniae and improved lung tissue damage in a dose-dependent manner. Astragaloside IV also decreased the expression of TGF-β1/Smad signaling pathway-related proteins and decreased the protein levels of inflammation-related p-IκBα and p65 in lung tissues induced by K. pneumoniae. Additionally, it was found that the effects of 20 mg/kg astragaloside IV were similar to SB-431542, which could improve pulmonary fibrosis induced by K. pneumoniae, decrease the levels of TGF-β1/Smad signaling pathway-related proteins in lung, and reduce inflammation at the same time. Astragaloside IV could alleviate the inflammation of rat pneumonia induced by K. pneumoniae through suppressing the TGF-β1/Smad pathway. Topics: Animals; Cytokines; Inflammation; Klebsiella pneumoniae; NF-KappaB Inhibitor alpha; Pneumonia; Rats; Transforming Growth Factor beta1 | 2023 |
Blocking TGF-β type 1 receptor partially reversed skin tissue damage in experimentally induced atopic dermatitis in mice.
Animals with impaired transforming growth factor (TGF)-β1 signaling developed spontaneous lethal autoimmune inflammationand autoimmune diseases. Moreover, evidence for modified TGF-β signaling in atopic dermatitis (AD) exists. Therefore, the goal of this study was to determine whether SB-431542, a potent and selective inhibitor of the TGF-β type 1 receptor (TGF-βR1), could attenuate such a severe reaction in mice. In addition, the molecular underpinnings the possible protective effects were also investigated. Repeated epicutaneous application of DNCB was performed on the ear and shaved dorsal skin of miceto induce AD-like symptoms and skin lesions. SB-431542 (1 mg/kg) was given by intra-peritoneal injection three times weekly for 3 weeks to assess the anti-pruritic effects. Serum levels of TGF-β1, TGF-βR1, latency-associated peptide (LAP), tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were assessed by ELISA. Moreover, the gene expression of TNF-α, IL-1β and IL-6 were determined. Apoptotic pathway was evaluated by measuring the activity of caspase-3 and by staining skin sections with anti-caspase-3 antibodies. We found that SB-431542 alleviated DNCB-induced AD-like symptoms as quantified by skin lesion,dermatitisscore, ear thickness and scratching behavior. In parallel, SB-431542 blocked DNCB-induced elevation in serum levels of TNF-α, TGF-β1, TGF-βR1, LAP, IL-1β, IL-6 and IgE. The collective results indicate that SB-431542 partially suppresses DNCB-induced AD in micevia reduction of TGF-β1 signaling pathway associated with inhibition of inflammation and apoptosis. Topics: Animals; Antioxidants; Benzamides; Biomarkers; Caspase 3; Dermatitis, Atopic; Dinitrochlorobenzene; Dioxoles; Disease Models, Animal; Enzyme Activation; Fibrosis; Gene Expression Regulation; Hypersensitivity; Inflammation; Inflammation Mediators; Mice, Inbred BALB C; Receptor, Transforming Growth Factor-beta Type I; Skin; Transforming Growth Factor beta | 2018 |
The cat as a naturally occurring model of renal interstitial fibrosis: Characterisation of primary feline proximal tubular epithelial cells and comparative pro-fibrotic effects of TGF-β1.
Chronic kidney disease (CKD) is common in both geriatric cats and aging humans, and is pathologically characterised by chronic tubulointerstitial inflammation and fibrosis in both species. Cats with CKD may represent a spontaneously occurring, non-rodent animal model of human disease, however little is known of feline renal cell biology. In other species, TGF-β1 signalling in the proximal tubular epithelium is thought to play a key role in the initiation and progression of renal fibrosis. In this study, we first aimed to isolate and characterise feline proximal tubular epithelial cells (FPTEC), comparing them to human primary renal epithelial cells (HREC) and the human proximal tubular cell line HK-2. Secondly, we aimed to examine and compare the effect of human recombinant TGF-β1 on cell proliferation, pro-apoptotic signalling and genes associated with epithelial-to-mesenchymal transition (EMT) in feline and human renal epithelial cells. FPTEC were successfully isolated from cadaverous feline renal tissue, and demonstrated a marker protein expression profile identical to that of HREC and HK-2. Exposure to TGF-β1 (0-10 ng/ml) induced a concentration-dependent loss of epithelial morphology and alterations in gene expression consistent with the occurrence of partial EMT in all cell types. This was associated with transcription of downstream pro-fibrotic mediators, growth arrest in FPTEC and HREC (but not HK-2), and increased apoptotic signalling at high concentrations of TGF- β1. These effects were inhibited by the ALK5 (TGF-β1RI) antagonist SB431542 (5 μM), suggesting they are mediated via the ALK5/TGF-β1RII receptor complex. Taken together, these results suggest that TGF-β1 may be involved in epithelial cell dedifferentiation, growth arrest and apoptosis in feline CKD as in human disease, and that cats may be a useful, naturally occurring model of human CKD. Topics: Animals; Benzamides; Cats; Cell Cycle Checkpoints; Cell Dedifferentiation; Cells, Cultured; Dioxoles; Disease Models, Animal; Epithelial Cells; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Inflammation; Kidney; Kidney Tubules, Proximal; Receptor, Transforming Growth Factor-beta Type I; Renal Insufficiency, Chronic; Signal Transduction; Transforming Growth Factor beta1; Urinary Tract | 2018 |
Is TGFβ as an anti-inflammatory cytokine required for differentiation of inflammatory T
T-Helper 17 (T Topics: Antibodies, Neutralizing; Benzamides; Cell Differentiation; Cell Separation; Cells, Cultured; Cytokines; Dioxoles; Flow Cytometry; Forkhead Transcription Factors; Humans; Inflammation; Inflammation Mediators; Pyrazoles; T-Lymphocyte Subsets; Th17 Cells; Thiosemicarbazones; Transforming Growth Factor beta | 2016 |
Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells.
Periodontitis is the most prevalent infectious disease caused by periodontopathic bacteria and is also a chronic inflammatory disease. Gingival crevicular fluid (GCF) is an inflammatory exudate that seeps into the gingival crevices or periodontal pockets around teeth with inflamed gingiva, and contains various materials including leukocytes and cytokines. Since gingival epithelial cells, which form a barrier against bacterial challenges, are affected by GCF, cytokines or other materials contained within GCF are engaged in the maintenance and disruption of the epithelial barrier. Accordingly, its compositional pattern has been employed as a reliable objective index of local inflammation. Transforming growth factor β1 (TGF-β1) levels in GCF were previously shown to be markedly higher in patients with periodontitis than in healthy subject. However, it currently remains unclear how TGF-β1 affects gingival epithelial cell growth or apoptosis; therefore, elucidating the mechanism responsible may lead to a deeper understanding of pathogenic periodontitis. In the present study, the human gingival epithelial cell line, OBA9 cells were stimulated with recombinant TGF-β1. Apoptosis-related protein levels were determined by Western blotting. Caspase-3/7 activity was measured with a Caspase-Glo assay kit. Surviving and apoptotic cells were detected using an MTS assay and TUNEL staining, respectively. TGF-βRI siRNA and smad2 siRNA were transfected into cells using the lipofectamine RNAiMAX reagent. TGF-β1 elevated caspase-3 activity and the number of TUNEL-positive apoptotic cells in OBA9 cells. Furthermore, while the levels of the pro-apoptotic proteins Bax, Bak, Bim, and Bad were increased in OBA9 cells stimulated with TGF-β1, the TGF-β1 treatment also decreased the levels of anti-apoptotic proteins such as Bcl-2 and Bcl-xL in a time-dependent manner. Additionally, TGF-β1 up-regulated the protein levels of cleaved caspase-9. These results indicated that TGF-β1-induced apoptosis was involved in a mitochondria-related intrinsic pathway. TGF-β1 phosphorylated smad2 in OBA9 cells and this phosphorylation was clearly reduced by SB431542 (a TGF-β type I receptor inhibitor). Consistent with this result, SB431542 or smad2 siRNA-induced reductions in smad2 protein expression levels attenuated TGF-β1-induced apoptosis. On the other hand, the ligation of TGF-β1 on its receptor also stimulated the phosphorylation of Erk and Akt, which are smad2-independent pathways. However, the Topics: Acetylcysteine; Apoptosis; Benzamides; Caspase 3; Caspase 7; Cell Line; Cell Line, Tumor; Cell Proliferation; Cell Survival; Dioxoles; Epithelial Cells; Extracellular Signal-Regulated MAP Kinases; Gingiva; Humans; Inflammation; MAP Kinase Signaling System; Periodontitis; Phosphorylation; Proto-Oncogene Proteins c-akt; RNA, Small Interfering; Signal Transduction; Smad2 Protein; Transforming Growth Factor beta; Transforming Growth Factor beta1 | 2015 |
Thrombin-induced TGF-β1 pathway: a cause of communicating hydrocephalus post subarachnoid hemorrhage.
The mechanism of communicating hydrocephalus after subarachnoid hemorrhage (SAH) remains unclear. Revealing a signaling cascade may provide significant insights into the molecular etiology of the accumulation of cerebrospinal fluid (CSF) in cerebral compartments during SAH. To investigate the mechanism of the communicating hydrocephalus following SAH, we infused CSF with thrombin (TH), resulting in proinflammatory and proliferative responses in rat meninges of SAH. The effect of TH could be completely blocked by a transforming growth factor β1 (TGF-β1) inhibitor, SB-431542, suggesting that TH-stimulated proliferation of meninges is through the TGF-β1 signaling pathway. The cascade of TGF β1-Smad3 was significantly upregulated by TH, which, in turn, stimulated the proliferation of subarachnoid meninges. TH-induced overexpression of TGF-β1 and activation of its downstream factors might be a mechanism of communicating hydrocephalus after SAH. Topics: Animals; Benzamides; Cell Proliferation; Cells, Cultured; Connective Tissue Growth Factor; Dioxoles; Female; Hydrocephalus; Inflammation; Meninges; Rats; Rats, Wistar; RNA, Messenger; Signal Transduction; Smad3 Protein; Subarachnoid Hemorrhage; Thrombin; Transforming Growth Factor beta | 2013 |
TGF-β1 as possible link between loss of bone mineral density and chronic inflammation.
The TGF family plays a key role in bone homeostasis. Systemic or topic application of proteins of this family apparently positively affects bone healing in vivo. However, patients with chronic inflammation, having increased TGF-β(1) serum-levels, often show reduced bone mineral content and disturbed bone healing. Therefore, we wanted to identify intracellular mechanisms induced by chronic presence of TGF-β(1) and their possible role in bone homeostasis in primary human osteoblasts.. Osteoblasts were isolated from femur heads of patients undergoing total hip replacement. Adenoviral reporter assays showed that in primary human osteoblasts TGF-β(1) mediates its signal via Smad2/3 and not Smad1/5/8. It induces proliferation as an intermediate response but decreases AP-activity and inorganic matrix production as a late response. In addition, expression levels of osteoblastic markers were strongly regulated (AP↓; Osteocalcin↓; Osteopontin↑; MGP↓; BMP 2↓; BSP2↓; OSF2↓; Osteoprotegerin↓; RANKL↑) towards an osteoclast recruiting phenotype. All effects were blocked by inhibition of Smad2/3 signaling with the Alk5-Inhibitor (SB431542). Interestingly, a rescue experiment showed that reduced AP-activities did not recover to base line levels, even 8 days after stopping the TGF-β(1) application.. In spite of the initial positive effects on cell proliferation, it is questionable if continuous Smad2/3 phosphorylation is beneficial for bone healing, because decreased AP-activity and BMP2 levels indicate a loss of function of the osteoblasts. Thus, inhibition of Smad2/3 phosphorylation might positively influence functional activity of osteoblasts in patients with chronically elevated TGF-β(1) levels and thus, could lead to an improved bone healing in vivo. Topics: Aged; Alkaline Phosphatase; Benzamides; Bone Density; Bone Morphogenetic Protein 2; Bone Morphogenetic Protein 7; Bone Resorption; Cell Proliferation; Cells, Cultured; Chronic Disease; Dioxoles; Female; Gene Expression Regulation; Humans; Inflammation; Male; Osteoblasts; Phosphorylation; Protein Serine-Threonine Kinases; RANK Ligand; Receptor, Transforming Growth Factor-beta Type I; Receptors, Transforming Growth Factor beta; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Smad Proteins; Time Factors; Transforming Growth Factor beta1 | 2010 |
Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis.
Brain injury may result in the development of epilepsy, one of the most common neurological disorders. We previously demonstrated that albumin is critical in the generation of epilepsy after blood-brain barrier (BBB) compromise. Here, we identify TGF-beta pathway activation as the underlying mechanism. We demonstrate that direct activation of the TGF-beta pathway by TGF-beta1 results in epileptiform activity similar to that after exposure to albumin. Coimmunoprecipitation revealed binding of albumin to TGF-beta receptor II, and Smad2 phosphorylation confirmed downstream activation of this pathway. Transcriptome profiling demonstrated similar expression patterns after BBB breakdown, albumin, and TGF-beta1 exposure, including modulation of genes associated with the TGF-beta pathway, early astrocytic activation, inflammation, and reduced inhibitory transmission. Importantly, TGF-beta pathway blockers suppressed most albumin-induced transcriptional changes and prevented the generation of epileptiform activity. Our present data identifies the TGF-beta pathway as a novel putative epileptogenic signaling cascade and therapeutic target for the prevention of injury-induced epilepsy. Topics: Action Potentials; Albumins; Animals; Antibodies; Astrocytes; Benzamides; Blood-Brain Barrier; Brain; Cluster Analysis; Dioxoles; Disease Models, Animal; Electric Stimulation; Epilepsy; gamma-Aminobutyric Acid; Gene Expression; Gene Expression Profiling; Gene Expression Regulation; Genome-Wide Association Study; Glutamic Acid; Immunoprecipitation; In Vitro Techniques; Inflammation; Ion Channels; Male; Microarray Analysis; Rats; Rats, Wistar; Signal Transduction; Smad2 Protein; Statistics, Nonparametric; Transforming Growth Factor beta; Transforming Growth Factor beta2 | 2009 |