4-(4-chlorophenyl)-3-methylbut-3-en-2-oxime has been researched along with Myalgia* in 2 studies
2 other study(ies) available for 4-(4-chlorophenyl)-3-methylbut-3-en-2-oxime and Myalgia
Article | Year |
---|---|
Roles of TRPV1 and TRPA1 in Spontaneous Pain from Inflamed Masseter Muscle.
Craniofacial muscle pain, such as spontaneous pain and bite-evoked pain, are major symptoms in patients with temporomandibular disorders and infection. However, the underlying mechanisms of muscle pain, especially mechanisms of highly prevalent spontaneous pain, are poorly understood. Recently, we reported that transient receptor potential vanilloid 1 (TRPV1) contributes to spontaneous pain but only marginally contributes to bite-evoked pain during masseter inflammation. Here, we investigated the role of transient receptor potential ankyrin 1 (TRPA1) in spontaneous and bite-evoked pain during masseter inflammation, and dissected the relative contributions of TRPA1 and TRPV1. Masseter inflammation increased mouse grimace scale (MGS) scores and face wiping behaviors. Pharmacological or genetic inhibition of TRPA1 significantly attenuated MGS but not face wiping behaviors. MGS scores were also attenuated by scavenging putative endogenous ligands for TRPV1 or TRPA1. Simultaneous inhibition of TRPA1 by AP18 and TRPV1 by AMG9810 in masseter muscle resulted in robust inhibition of both MGS and face wiping behaviors. Administration of AP18 or AMG9810 to masseter muscle induced conditioned place preference (CPP). The extent of CPP following simultaneous administration of AP18 and AMG9810 was greater than that induced by the individual antagonists. In contrast, inflammation-induced reduction of bite force was not affected by the inhibition of TRPA1 alone or in combination with TRPV1. These results suggest that simultaneous inhibition of TRPV1 and TRPA1 produces additive relief of spontaneous pain, but does not ameliorate bite-evoked pain during masseter inflammation. Our results provide further evidence that distinct mechanisms underlie spontaneous and bite-evoked pain from inflamed masseter muscle. Topics: Acrylamides; Animals; Behavior, Animal; Bridged Bicyclo Compounds, Heterocyclic; Conditioning, Operant; Inflammation; Masseter Muscle; Mice; Myalgia; Oximes; Pain Measurement; TRPA1 Cation Channel; TRPV Cation Channels | 2018 |
The role of TRPA1 in muscle pain and mechanical hypersensitivity under inflammatory conditions in rats.
Transient receptor potential cation channel, subfamily A, member 1 (TRPA1) is expressed in muscle afferents and direct activation of these receptors induces acute mechanical hypersensitivity. However, the functional role of TRPA1 under pathological muscle pain conditions and mechanisms by which TRPA1 mediate muscle pain and hyperalgesia are not clearly understood. Two rodent behavioral models validated to assess craniofacial muscle pain conditions were used to study ATP- and N-Methyl-D-aspartate (NMDA)-induced acute mechanical hypersensitivity and complete Freund's adjuvant (CFA)-induced persistent mechanical hypersensitivity. The rat grimace scale (RGS) was utilized to assess inflammation-induced spontaneous muscle pain. Behavioral pharmacology experiments were performed to assess the effects of AP18, a selective TRPA1 antagonist under these conditions. TRPA1 expression levels in trigeminal ganglia (TG) were examined before and after CFA treatment in the rat masseter muscle. Pre-treatment of the muscle with AP18 dose-dependently blocked the development of acute mechanical hypersensitivity induced by NMDA and α,β-methylene adenosine triphosphate (αβmeATP), a specific agonist for NMDA and P2X3 receptor, respectively. CFA-induced mechanical hypersensitivity and spontaneous muscle pain responses were significantly reversed by post-treatment of the muscle with AP18 when CFA effects were most prominent. CFA-induced myositis was accompanied by significant up-regulation of TRPA1 expression in TG. Our findings showed that TRPA1 in muscle afferents plays an important role in the development of acute mechanical hypersensitivity and in the maintenance of persistent muscle pain and hypersensitivity. Our data suggested that TRPA1 may serve as a downstream target of pro-nociceptive ion channels, such as P2X3 and NMDA receptors in masseter afferents, and that increased TRPA1 expression under inflammatory conditions may contribute to the maintenance of persistent muscle pain and mechanical hyperalgesia. Mechanistic studies elucidating transcriptional or post-translational regulation of TRPA1 expression under pathological pain conditions should provide important basic information to further advance the treatment of craniofacial muscle pain conditions. Topics: Adenosine Triphosphate; Animals; Disease Models, Animal; Excitatory Amino Acid Agonists; Freund's Adjuvant; Hyperalgesia; Male; Myalgia; Myositis; N-Methylaspartate; Oximes; Pain Threshold; Rats; Rats, Sprague-Dawley; Trigeminal Ganglion; TRPA1 Cation Channel; TRPC Cation Channels; Up-Regulation | 2015 |