4-(3-3-4-p-menthadien-(1-8)-yl)olivetol has been researched along with Insulin-Resistance* in 2 studies
2 other study(ies) available for 4-(3-3-4-p-menthadien-(1-8)-yl)olivetol and Insulin-Resistance
Article | Year |
---|---|
Antidiabetic actions of GPR55 agonist Abn-CBD and sitagliptin in obese-diabetic high fat fed mice.
GPR55 has been recognized as a novel anti-diabetic target exerting positive effects on beta cell function and mass. This study evaluated the metabolic actions and therapeutic efficacy of GPR55 agonist abnormal cannabidiol (Abn-CBD) administered alone and in combination with sitagliptin in diet-induced obese-diabetic mice. Chronic effects of 21-day oral administration of Abn-CBD (0.1 µmol/kg BW) monotherapy and in combination with sitagliptin (50 mg/kg BW) were assessed in obese-diabetic HFF mice (n = 8). Assessments of plasma glucose, circulating insulin, DPP-IV activity, CRP, amylase, lipids, body weight and food intake were undertaken. Glucose tolerance, insulin sensitivity, DEXA scanning and islet morphology analysis were performed at 21-days. Sitagliptin, Abn-CBD alone and in combination with sitagliptin attenuated plasma glucose by 37-53 % (p < 0.01 - p < 0.001) and enhanced circulating insulin concentrations by 23-31 % (p < 0.001). Abn-CBD alone and with sitagliptin reduced bodyweight by 9-10 % (p < 0.05). After 21-days, Abn-CBD in combination with sitagliptin (44 %; p < 0.01) improved glucose tolerance, whilst enhancing insulin sensitivity by 79 % (p < 0.01). Abn-CBD increased islet area (86 %; p < 0.05), beta cell mass (p < 0.05) and beta cell proliferation (164 %; p < 0.001), whilst in combination with sitagliptin islet area was decreased (50 %; p < 0.01). Abn-CBD alone, in combination with sitagliptin or sitagliptin alone decreased triglycerides by 34-65 % (p < 0.001) and total cholesterol concentrations by 15-25 % (p < 0.001). In addition, Abn-CBD in combination with sitagliptin reduced fat mass by 19 % (p < 0.05) and reduced CRP concentrations (39 %; p < 0.05). These findings advocate Abn-CBD monotherapy and in combination with sitagliptin as a novel and effective approach for bodyweight control and the treatment of glucose intolerance and dyslipidaemia in type-2-diabetes. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Hypoglycemic Agents; Insulin; Insulin Resistance; Mice; Obesity; Receptors, Cannabinoid; Sitagliptin Phosphate | 2023 |
Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice.
Abnormal cannabidiol (Abn-CBD) and AS-1269574 are potent selective agonists for GPR55 and GPR119, respectively. The present study evaluated the actions and ability of these small-molecule agonists to counteract experimental diabetes in mice.. Diabetes was induced in NIH Swiss mice by five consecutive daily intraperitoneal injections of 40 mg/(kg body weight) streptozotocin. Diabetic mice received daily oral administration of Abn-CBD or AS-1269574 (0.1 μmol/kg) or saline vehicle (0.9% wt/vol. NaCl) over 28 days. Body weight, food intake, fluid intake, plasma glucose, insulin, glucose tolerance, insulin release, lipid profile and pancreatic morphology were examined. Mechanism of action of agonists was assessed in acute studies using incretin-receptor-knockout mice.. Abn-CBD and AS-1269574 decreased plasma glucose (20-26%, p < 0.05) and increased circulating insulin (47-48%, p < 0.05) by 10-28 days, compared with saline-treated diabetic controls. Food intake and polydipsia were reduced by both agonists (21-23%, p < 0.05 and 33-35%, p < 0.01, respectively). After 28 days of treatment, plasma glucagon concentrations were reduced (p < 0.01) and glucose tolerance was enhanced by 19-44% by Abn-CBD (p < 0.05 or p < 0.001) and AS-1269574 (p < 0.05 to p < 0.001). Plasma insulin responses were improved (p < 0.01) and insulin resistance was decreased (p < 0.05 or p < 0.01) in both Abn-CBD- and AS-1269574-treated groups. Triacylglycerols were decreased by 19% with Abn-CBD (p < 0.05) and 32% with AS-1269574 (p < 0.01) while total cholesterol was reduced by 17% (p < 0.01) and 15% (p < 0.05), respectively. Both agonists enhanced beta cell proliferation (p < 0.001) although islet area was unchanged. Acute studies in Gipr- and Glp1r-knockout mice revealed an important role for the glucagon-like peptide 1 (GLP-1) receptor in the actions of both agonists, with the glucose-lowering effects of Abn-CBD also partly mediated through the glucose-dependent insulinotropic peptide (GIP) receptor.. These data highlight the potential for fatty acid G-protein-coupled receptor-based therapies as novel insulinotropic and glucose-lowering agents acting partly through the activation of incretin receptors. Topics: Animals; Diabetes Mellitus, Experimental; Eating; Ethanolamines; Incretins; Insulin Resistance; Insulin-Secreting Cells; Male; Mice; Mice, Knockout; Peptide Fragments; Pyrimidines; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Resorcinols; Streptozocin | 2016 |