3-nitrotyrosine and Weight-Loss

3-nitrotyrosine has been researched along with Weight-Loss* in 6 studies

Other Studies

6 other study(ies) available for 3-nitrotyrosine and Weight-Loss

ArticleYear
High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats.
    Nutrition research (New York, N.Y.), 2013, Volume: 33, Issue:4

    Obesity is associated with elevated risk of heart disease. A solid understanding of the safety and potential adverse effects of high-fat, low-carbohydrate diet (HFLCD) similar to that used by humans for weight loss on the heart is crucial. High fat intake is known to promote increases in reactive oxygen species and mitochondrial damage. We hypothesized that there would be adverse effects of HFLCD on myocardial ischemia/reperfusion injury through enhancing oxidative stress injury and impairing mitochondrial biogenesis in a nongenetic, diet-induced rat model of obesity. To test the hypothesis, 250-g male Sprague-Dawley rats were fed an obesity-promoting diet for 7 weeks to induce obesity, then switched to HFLCD or a low-fat control diet for 2 weeks. Isolated hearts underwent global low flow ischemia for 60 minutes and reperfusion for 60 minutes. High-fat, low-carbohydrate diet resulted in greater weight gain and lower myocardial glycogen, plasma adiponectin, and insulin. Myocardial antioxidant gene transcript and protein expression of superoxide dismutase and catalase were reduced in HFLCD, along with increased oxidative gene NADPH oxidase-4 transcript and xanthine oxidase activity, and a 37% increase in nitrated protein (nitrotyrosine) in HFLCD hearts. The cardiac expression of key mitochondrial regulatory factors such as nuclear respiratory factor-1 and transcription factor A-mitochondrial were inhibited and myocardial mitochondrial DNA copy number decreased. The cardiac expression of adiponectin and its receptors was down-regulated in HFLCD. High-fat, low-carbohydrate diet impaired recovery of left ventricular rate-pressure product after ischemia/reperfusion and led to 3.5-fold increased injury as measured by lactate dehydrogenase release. In conclusion, HFLCD leads to increased ischemic myocardial injury and impaired recovery of function after reperfusion and was associated with attenuation of mitochondrial biogenesis and enhanced oxidative stress in obese rats. These findings may have important implications for diet selection in obese patients with ischemic heart disease.

    Topics: Adiponectin; Animals; Antioxidants; Catalase; Diet, Carbohydrate-Restricted; Diet, High-Fat; DNA Copy Number Variations; DNA, Mitochondrial; Glycogen; Insulin; Male; Mitochondrial Turnover; Myocardial Reperfusion Injury; Myocardium; NADPH Oxidase 4; NADPH Oxidases; Obesity; Oxidative Stress; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Superoxide Dismutase; Tyrosine; Weight Loss; Xanthine Oxidase

2013
Loss of total and visceral adipose tissue mass predicts decreases in oxidative stress after weight-loss surgery.
    Obesity (Silver Spring, Md.), 2009, Volume: 17, Issue:3

    It is not known whether there are mechanisms linking adipose tissue mass and increased oxidative stress in obesity. This study investigated associations between decreasing general and abdominal fat depots and oxidative stress during weight loss. Subjects were severely obese women who were measured serially at baseline and at 1, 6 (n = 30), and 24 months (n = 18) after bariatric surgery. Total fat mass (FAT) and volumes of visceral (VAT) and subcutaneous abdominal adipose tissue (SAT) were related to plasma concentrations of derivatives of reactive oxidative metabolites (dROMS), a measure of lipid peroxides and oxidative stress. After intervention, BMI significantly decreased, from 47.7 +/- 0.8 kg/m(2) to 43.3 +/- 0.8 kg/m(2) (1 month), 35.2 +/- 0.8 kg/m(2) (6 months), and 30.2 +/- 1.2 kg/m(2) (24 months). Plasma dROMS also significantly deceased over time. At baseline, VAT (r = 0.46), FAT (r = 0.42), and BMI (r = 0.37) correlated with 6-month decreases in dROMS. Similarly, at 1 month, VAT (r = 0.43) and FAT (r = 0.41) correlated with 6-month decreases in dROMS. Multiple regression analysis showed that relationships between VAT and dROMS were significant after adjusting for FAT mass. Increased plasma dROMS at baseline were correlated with decreased concentrations of high-density lipoprotein (HDL) at 1 and 6 months after surgery (r = -0.38 and -0.42). This study found longitudinal associations between general, and more specifically intra-abdominal adiposity, and systemic lipid peroxides, suggesting that adipose tissue mass contributes to oxidative stress.

    Topics: Adipose Tissue; Adult; Bariatric Surgery; Body Mass Index; Body Weight; Female; Humans; Intra-Abdominal Fat; Lipid Peroxides; Lipoproteins, HDL; Longitudinal Studies; Middle Aged; Obesity; Oxidative Stress; Predictive Value of Tests; Reactive Oxygen Species; Subcutaneous Fat; Tyrosine; Weight Loss

2009
Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis.
    Experimental neurology, 2005, Volume: 191, Issue:2

    Accumulating evidence suggests that inflammation plays a major role in the pathogenesis of motoneuron death in amyotrophic lateral sclerosis (ALS) both in humans and transgenic mouse models. Peroxisome proliferator-activated receptors (PPARs) are involved in the inflammatory process. Agonists of PPAR-alpha, -gamma, and -delta show anti-inflammatory effects both in vitro and in vivo. We investigated the therapeutic effect of pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist, in the G93A SOD1 transgenic mouse model of ALS. Orally administered pioglitazone improved motor performance, delayed weight loss, attenuated motor neuron loss, and extended survival of G93A mice as compared to the untreated control littermate group. Pioglitazone treatment extended survival by 13%, and it reduced gliosis as assessed by immunohistochemical staining for CD-40 and GFAP. Pioglitazone also reduced iNOS, NFkappa-B, and 3-nitrotyrosine immunoreactivity in the spinal cords of G93A transgenic mice. These results suggest that pioglitazone may have therapeutic potential for human ALS.

    Topics: Administration, Oral; Amyotrophic Lateral Sclerosis; Animals; Cell Count; Disease Models, Animal; Disease Progression; Gliosis; Lumbosacral Region; Mice; Mice, Transgenic; Neurons; Neuroprotective Agents; NF-kappa B; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Pioglitazone; PPAR gamma; Psychomotor Performance; Spinal Cord; Superoxide Dismutase; Survival Rate; Thiazolidinediones; Tyrosine; Weight Loss

2005
Effect of rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 on bleomycin-induced lung injury.
    The European respiratory journal, 2005, Volume: 25, Issue:2

    Thiazolidinedione rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), are two peroxisome proliferator-activated receptor (PPAR)-gamma ligands. The aim of this study was to investigate the effect of rosiglitazone and 15d-PGJ2 on the lung injury caused by bleomycin administration. Mice subjected to intratracheal administration of bleomycin developed significant lung injury. An increase in immunoreactivity to nitrotyrosine, poly(ADP ribose) polymerase (PARP) and inducible nitric oxide synthase as well as a significant loss of body weight and mortality was observed in the lung of bleomycin-treated mice. Administration of the two PPAR-gamma agonists rosiglitazone (10 mg x kg(-1) i.p.) and 15d-PGJ2 (30 microg x kg(-1) i.p.) significantly reduced the: 1) loss of body weight, 2) mortality rate, 3) infiltration of the lung with polymorphonuclear neutrophils (myeloperoxidase activity), 4) oedema formation, and 5) histological evidence of lung injury. Administration of rosiglitazone and 15d-PGJ2 also markedly reduced the nitrotyrosine, PARP and inducible nitric oxide synthase formation. In addition, treatment with the PPAR-gamma antagonist bisphenol A diglycidyl ether (1 mg x kg(-1) i.p. 30 min before the rosiglitazone or 15d-PGJ2) significantly antagonised the effect of the two PPAR-gamma agonists. These results demonstrate that the two peroxisome proliferator-activated receptor-gamma agonists, rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, significantly reduce lung injury induced by bleomycin in mice.

    Topics: Analysis of Variance; Animals; Benzhydryl Compounds; Biopsy; Bleomycin; Epoxy Compounds; Immunoenzyme Techniques; Instillation, Drug; Male; Mice; Nitric Oxide Synthase; Peroxidase; Poly(ADP-ribose) Polymerases; Prostaglandin D2; Pulmonary Fibrosis; Random Allocation; Rosiglitazone; Thiazolidinediones; Tyrosine; Weight Loss

2005
Amelioration of cisplatin toxicity by a fermented grain food product.
    BioFactors (Oxford, England), 2002, Volume: 16, Issue:3-4

    The most noticeable hypothesis regarding the pathogenesis of cisplatin toxicity, seen mainly in kidney and intestine, is oxidative stress, an imbalance between free-radical generating cisplatin and radical scavenging systems. This paper describes the role of the antioxidant system in cisplatin-induced toxicity and the protective effect by a processed grain food (Antioxidant Biofactor: AOB), which has been shown to exhibit strong antioxidant activity. Male Fischer 344 rats were used. They were pre-fed either a basal diet (control, 15 g/day) or the diet supplemented with AOB to provide 6.5% or 20% of total diet throughout the experiment. Cisplatin (5 mg/kg, i.v.) was administered at the start of the experiment, and the animals were sacrificed 5 days later. Blood urea nitrogen (BUN) and plasma creatinine, NO2(-) and NO3(-) (NOx) were determined from the plasma. The levels of 4-hydroxy-2-nonenal (a lipid peroxidation product), 8-hydroxy-deoxyguanosine (8-OHdG, an oxidatively modified DNA adduct) and nitrotyrosine were histologically analyzed. The cisplatin administration resulted in a loss of body weight and elevations of BUN, serum creatinine and NOx levels, whereas AOB supplement reversed these effects. The severe morphological damages induced in the kidney and intestine by the cisplatin administration were markedly improved in the AOB group. The levels of lipid peroxidation, 8-OHdG, and nitrotyrosine all paralleled the morphological damage. The AOB effect was dose dependent. In conclusion, the present study suggests that certain food additives like AOB may be of benefit against the side effects of cisplatin.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Aldehydes; Animals; Antioxidants; Blood Urea Nitrogen; Cisplatin; Creatinine; Deoxyguanosine; Diet; Edible Grain; Fermentation; Intestines; Kidney; Lipid Peroxidation; Male; Nitrates; Nitrites; Rats; Rats, Inbred F344; Tyrosine; Weight Loss

2002
Dietary arginine alters time of symptom onset in Huntington's disease transgenic mice.
    Brain research, 2000, Sep-01, Volume: 875, Issue:1-2

    Recent neuroimaging studies reported complex changes in cerebral blood flow (CBF) in early-staged Huntington's disease (HD) patients. Deckel and co-workers [Deckel and Duffy, Brain Res. (in press); Deckel and Cohen, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 24 (2000) 193; Deckel et al., Neurology 51 (1998) 1576; Deckel et al., J. Nucl. Med. 41 (2000) 773] suggested that these findings might be accounted for, in part, by alterations in cerebral nitric oxide (NO) and its byproduct, peroxynitrite. The current experiment tested this hypothesis by altering NO levels via manipulations of dietary L-arginine (ARG), the dietary precursor of NO, in mice transgenic for HD. Seventy-one mice were assigned at 12 weeks of age to one of three isocaloric diets that varied in their content of ARG. These diets included: (a) 0% ARG, (b) 1.2% ARG (i.e. typical mouse chow), or (c) 5% ARG. The 5% ARG diets in HD mice accelerated the time of onset of body weight loss (P<0.05) and motor impairments (P<0.05), and increased resting CBF in HD relative to control (P<0.05). Conversely, the 0% ARG diet demonstrated no loss of body weight and had no changes in CBF relative to controls. However, the 0% ARG HD group continued to show significant deficits on motor testing (P<0. 05). The 1.2% ARG HD group showed reduced body weight loss, better motor functioning, and fewer changes in CBF compared to the 5% ARG HD group. Immunocytochemistry analysis found greater deposition of nitrotyrosine in the cortex, and vasculature, of HD+ mice, 5% and 1. 2%>0% arginine diets. When collapsed across all conditions, CBF inversely correlated (P<0.05) both with the body weight and motor changes suggesting that changes in CBF are associated with behavioral decline in HD mice. Collectively, these findings indicate that dietary consumption of the NO precursor ARG has a measurable, but complex, effect on symptom progression in HD transgenic mice, and implicates NO in the pathophysiology of HD.

    Topics: Animals; Arginine; Blood Glucose; Brain; Cerebrovascular Circulation; Diet; Huntington Disease; Mice; Mice, Transgenic; Movement Disorders; Time Factors; Tyrosine; Weight Loss

2000