3-nitrotyrosine has been researched along with Ventricular-Fibrillation* in 2 studies
2 other study(ies) available for 3-nitrotyrosine and Ventricular-Fibrillation
Article | Year |
---|---|
Peroxynitrite decreases arrhythmias induced by ischaemia reperfusion in anaesthetized dogs, without involving mitochondrial KATP channels.
Exogenous peroxynitrite from nanomolar to micromolar concentrations exerts cardioprotection. Here, we have assessed its effects on ischaemia- and reperfusion-induced ventricular arrhythmias in vivo and a possible role for mitochondrial K(ATP) channels in these effects, using the channel inhibitor 5-hydroxydecanoate (5-HD).. Chloralose-urethane-anaesthetized dogs were treated twice for 5 min with peroxynitrite (100 nM, by intracoronary infusions) in both the absence and presence of 5-HD (150 microg kg(-1) min(-1)), and then subjected to 25 min occlusion of the left anterior descending coronary artery. The severity of ischaemia and of arrhythmias, as well as the levels of nitrotyrosine were assessed and compared with a group of control dogs, subjected only to a 25 min occlusion and reperfusion insult.. Compared with controls, infusion of peroxynitrite markedly suppressed the number of ventricular premature beats (388+/-88 vs 133+/-44), the incidence of ventricular fibrillation both during occlusion (50% vs 10%) and reperfusion (100% vs 44%), and increased survival (0% vs 50%; all P<0.05). The severity of ischaemia (epicardial ST-segment changes, inhomogeneity of electrical activation) during occlusion and nitrotyrosine levels on reperfusion were significantly less in the peroxynitrite-treated dogs than in the controls. 5-HD did not modify the cardioprotective effects of peroxynitrite.. Exogenous peroxynitrite provided antiarrhythmic protection in vivo, which might have been on account of a reduction in endogenous peroxynitrite formation. This protection seemed not to be mediated through mitoK(ATP) channels. Topics: Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Coronary Vessels; Decanoic Acids; Dogs; Female; Hydroxy Acids; Male; Myocardial Reperfusion Injury; Peroxynitrous Acid; Potassium Channels; Severity of Illness Index; Survival Rate; Tyrosine; Ventricular Fibrillation | 2008 |
Enhancement of glutathione cardioprotection by ascorbic acid in myocardial reperfusion injury.
The present experiment determined the effects of glutathione and ascorbic acid, the two most important hydrophilic antioxidants, on myocardial ischemia-reperfusion injury and evaluated their relative therapeutic values. Isolated rat hearts were subjected to ischemia (30 min) and reperfusion (120 min) and treated with ascorbic acid, glutathione monoethyl ester (GSHme), or their combination at the onset of reperfusion. Administration of 1 mM GSHme alone, but not 1 mM ascorbic acid alone, significantly attenuated postischemic injury (P < 0.05 versus vehicle). Most interestingly, coadministration of ascorbic acid with GSHme markedly enhanced the protective effects of GSHme (P < 0.01 versus vehicle). The protection exerted by the combination of GSHme and ascorbic acid at 1 mM each was significantly greater than that observed with 1 mM GSHme alone (P < 0.05). Moreover, treatment with GSHme alone or GSHme plus ascorbic acid markedly reduced myocardial nitrotyrosine levels, suggesting that these treatments attenuated myocardial peroxynitrite formation. These results demonstrated that 1) GSHme, but not ascorbic acid, exerted protective effects against ischemia-reperfusion injury; and 2) the protective effects of GSHme were further enhanced by coadministration with ascorbic acid, suggesting a synergistic effect between GSHme and ascorbic acid. Topics: Animals; Antioxidants; Ascorbic Acid; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Synergism; Glutathione; Heart; Heart Rate; Incidence; Lipid Peroxidation; Myocardial Reperfusion Injury; Myocardium; Protective Agents; Rats; Reperfusion Injury; Tachycardia; Tyrosine; Ventricular Fibrillation | 2002 |