3-nitrotyrosine has been researched along with Substance-Related-Disorders* in 2 studies
2 other study(ies) available for 3-nitrotyrosine and Substance-Related-Disorders
Article | Year |
---|---|
Impairment of adult hippocampal neural progenitor proliferation by methamphetamine: role for nitrotyrosination.
Methamphetamine (METH) abuse has reached epidemic proportions, and it has become increasingly recognized that abusers suffer from a wide range of neurocognitive deficits. Much previous work has focused on the deleterious effects of METH on mature neurons, but little is known about the effects of METH on neural progenitor cells (NPCs). It is now well established that new neurons are continuously generated from NPCs in the adult hippocampus, and accumulating evidence suggests important roles for these neurons in hippocampal-dependent cognitive functions. In a rat hippocampal NPC culture system, we find that METH results in a dose-dependent reduction of NPC proliferation, and higher concentrations of METH impair NPC survival. NPC differentiation, however, is not affected by METH, suggesting cell-stage specificity of the effects of METH. We demonstrate that the effects of METH on NPCs are, in part, mediated through oxidative and nitrosative stress. Further, we identify seventeen NPC proteins that are post-translationally modified via 3-nitrotyrosination in response to METH, using mass spectrometric approaches. One such protein was pyruvate kinase isoform M2 (PKM2), an important mediator of cellular energetics and proliferation. We identify sites of PKM2 that undergo nitrotyrosination, and demonstrate that nitration of the protein impairs its activity. Thus, METH abuse may result in impaired adult hippocampal neurogenesis, and effects on NPCs may be mediated by protein nitration. Our study has implications for the development of novel therapeutic approaches for METH-abusing individuals with neurologic dysfunction and may be applicable to other neurodegenerative diseases in which hippocampal neurogenesis is impaired. Topics: Animals; Antioxidants; Apoptosis; Cell Differentiation; Cell Proliferation; Chromans; Dopamine Agents; Hippocampus; Humans; Methamphetamine; Models, Molecular; Neural Stem Cells; Oxidative Stress; Protein Conformation; Pyruvate Kinase; Rats; Rats, Inbred F344; Substance-Related Disorders; Tyrosine | 2011 |
The protective role of L-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction.
There is growing evidence that suggests that brain injury after amphetamine and methamphetamine (METH) administration is due to an increase in free radical formation and mitochondrial damage, which leads to a failure of cellular energy metabolism followed by a secondary excitotoxicity. Neuronal degeneration caused by drugs of abuse is also associated with decreased ATP synthesis. Defective mitochondrial oxidative phosphorylation and metabolic compromise also play an important role in atherogenesis, in the pathogenesis of Alzheimer's disease, Parkinson's disease, diabetes, and aging. The energy deficits in the central nervous system can lead to the generation of reactive oxygen and nitrogen species as indicated by increased activity of the free radical scavenging enzymes like catalase and superoxide dismutase. The METH-induced dopaminergic neurotoxicity may be mediated by the generation of peroxynitrite and can be protected by antioxidants selenium, melatonin, and selective nNOS inhibitor, 7-nitroindazole. L-Carnitine (LC) is well known to carry long-chain fatty acyl groups into mitochondria for beta-oxidation. It also plays a protective role in 3-nitropropioinc acid (3-NPA)-induced neurotoxicity as demonstrated in vitro and in vivo. LC has also been utilized in detoxification efforts in fatty acid-related metabolic disorders. In this study we have tested the hypothesis that enhancement of mitochondrial energy metabolism by LC could prevent the generation of peroxynitrite and free radicals produced by METH. Adult male C57BL/6N mice were divided into four groups. Group I served as control. Groups III and IV received LC (100 mg/kg, orally) for one week. Groups II and IV received 4 x 10 mg/kg METH i.p. at 2-h intervals after one week of LC administration. LC treatment continued for one more week to groups III and IV. One week after METH administration, mice were sacrificed by decapitation, and striatum was dissected to measure the formation of 3-nitrotyrosine (3-NT) by HPLC/Coularry system. METH treatment produced significant formation of 3-NT, a marker of peroxynitrite generation, in mice striatum. The pre- and post-treatment of mice with LC significantly attenuated the production of 3-NT in the striatum resulting from METH treatment. The protective effects by the compound LC in this study could be related to the prevention of the possible metabolic compromise by METH and the resulting energy deficits that lead to the generation of reactive oxygen and nitrog Topics: Animals; Brain; Carnitine; Cell Survival; Male; Methamphetamine; Mice; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; Neurotoxins; PC12 Cells; Pheochromocytoma; Rats; Substance-Related Disorders; Tyrosine | 2002 |