3-nitrotyrosine and Pseudomonas-Infections

3-nitrotyrosine has been researched along with Pseudomonas-Infections* in 4 studies

Other Studies

4 other study(ies) available for 3-nitrotyrosine and Pseudomonas-Infections

ArticleYear
Pulmonary microvascular hyperpermeability and expression of vascular endothelial growth factor in smoke inhalation- and pneumonia-induced acute lung injury.
    Burns : journal of the International Society for Burn Injuries, 2012, Volume: 38, Issue:7

    Acute lung injury (ALI) and sepsis are major contributors to the morbidity and mortality of critically ill patients. The current study was designed further evaluate the mechanism of pulmonary vascular hyperpermeability in sheep with these injuries.. Sheep were randomized to a sham-injured control group (n=6) or ALI/sepsis group (n=7). The sheep in the ALI/sepsis group received inhalation injury followed by instillation of Pseudomonas aeruginosa into the lungs. These groups were monitored for 24 h. Additional sheep (n=16) received the injury and lung tissue was harvested at different time points to measure lung wet/dry weight ratio, vascular endothelial growth factor (VEGF) mRNA and protein expression as well as 3-nitrotyrosine protein expression in lung homogenates.. The injury induced severe deterioration in pulmonary gas exchange, increases in lung lymph flow and protein content, and lung water content (P<0.01 each). These alterations were associated with elevated lung and plasma nitrite/nitrate concentrations, increased tracheal blood flow, and enhanced VEGF mRNA and protein expression in lung tissue as well as enhanced 3-nitrotyrosine protein expression (P<0.05 each).. This study describes the time course of pulmonary microvascular hyperpermeability in a clinical relevant large animal model and may improve the experimental design of future studies.

    Topics: Acute Lung Injury; Animals; Capillary Permeability; Disease Models, Animal; Female; Lung; Microcirculation; Nitric Oxide; Pneumonia; Pseudomonas aeruginosa; Pseudomonas Infections; Pulmonary Circulation; Pulmonary Edema; Pulmonary Gas Exchange; RNA, Messenger; Sepsis; Sheep; Smoke Inhalation Injury; Time Factors; Tyrosine; Vascular Endothelial Growth Factor A

2012
Anti-inflammatory effect of augmented nitric oxide production in chronic lung infection.
    The Journal of pathology, 2006, Volume: 209, Issue:2

    Chronic infection of the lungs with Pseudomonas aeruginosa complicates many long-term lung diseases including cystic fibrosis, bronchiectasis, chronic obstructive lung disease, and mechanical ventilation. In acute inflammatory lung diseases, increased nitric oxide synthase (NOS-2) expression leads to excess nitric oxide (NO) production, resulting in the production of reactive nitrogen intermediates, which contribute to tissue damage. In contrast, the contribution of NO to pulmonary damage in chronic Pseudomonas infection of the lung has not been directly examined and is unclear. Although NOS-2 expression is increased in this condition, NO production is not abnormally elevated. It was hypothesized that chronic infection of the airways does not cause increased NO production but, in contrast, leads to inappropriately low NO concentrations that are pro-inflammatory. A rodent model of chronic airway infection was used to examine the effects on lung damage of augmenting or inhibiting NO production after airway infection with P. aeruginosa was well established. Three days post-infection, L-arginine, which augments NO production, or L-NAME, an inhibitor of NO production, was administered in drinking water. Lung damage was assessed 12 days later. L-arginine treatment reduced tissue damage, inhibited neutrophil recruitment, and reduced the pro-inflammatory cytokine interleukin (IL)-1beta. Treatment with L-NAME caused loss of alveolar walls, greater vascular damage, and increased levels of the pro-inflammatory cytokine IL-6. Thus, in chronic airway infection, inhibition of NO production worsened lung damage, whereas augmenting NO ameliorated this damage. This is the first demonstration that augmenting endogenous NO production in chronic infective lung disease caused by P. aeruginosa is anti-inflammatory. Given that infection with this organism complicates many chronic lung diseases, most notoriously cystic fibrosis, these findings have important clinical implications.

    Topics: Animals; Arginine; Bronchoalveolar Lavage Fluid; Cell Count; Chronic Disease; Disease Models, Animal; Enzyme Inhibitors; Interleukin-1; Interleukin-6; Lung; Lung Diseases; Male; Neutrophils; NG-Nitroarginine Methyl Ester; Nitric Oxide; Pseudomonas Infections; Rats; Rats, Inbred WKY; Tyrosine; Vascular Endothelial Growth Factor A

2006
Inhibition of poly (ADP-ribose) polymerase attenuates acute lung injury in an ovine model of sepsis.
    Shock (Augusta, Ga.), 2004, Volume: 21, Issue:2

    It is known that in various pathophysiological conditions, reactive oxidants cause DNA strand breakage and subsequent activation of the nuclear enzyme poly(ADP ribose) polymerase (PARP). Activation of PARP results in cellular dysfunction. We hypothesized that pharmacological inhibition of PARP reduces the damage in the ovine model of acute lung injury (ALI). After smoke inhalation, Pseudomonas aeruginosa (5 x 109 cfu/kg) was instilled into both lungs. All of the animals were mechanically ventilated with 100% O2. The infusion of the PARP inhibitor (INO-1001, n = 6) began 1 h after the injury and thereafter through 24 h (3 mg bolus + 0.3 mg/kg/h, i.v.). Control animals (n = 6) were treated with saline. Sham injury animals (n = 8) received sham smoke and were mechanically ventilated in the same fashion. One-half of those sham animals (n = 4) were given the same dose of INO-1001. PaO2/FiO2 ratio at 24 h in saline and in the INO-1001-treated groups were 95 +/- 22 and 181 +/- 22, respectively (P < 0.05). Peak airway pressure at 24 h in the saline- and INO-1001-treated groups was 32.6 +/- 3.0 and 24.4 +/- 2.2, respectively (P < 0.05). Pulmonary shunt fraction was also significantly attenuated. INO-1001 treatment reduced pulmonary histological injury and attenuated poly (ADP-ribose) accumulation in the lung. In conclusion, inhibition of PARP improved the ALI after smoke inhalation and pneumonia. The results suggest that the activation of PARP plays a role in the pathophysiology of ALI in sheep.

    Topics: Animals; Antithrombins; DNA Damage; Enzyme Inhibitors; Female; Hematocrit; Hemoglobins; Immunohistochemistry; Indoles; Lipid Peroxidation; Lung; Malondialdehyde; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Poly(ADP-ribose) Polymerase Inhibitors; Pseudomonas aeruginosa; Pseudomonas Infections; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sepsis; Sheep; Time Factors; Tyrosine

2004
Type 2 nitric oxide synthase and protein nitration in chronic lung infection.
    The Journal of pathology, 2003, Volume: 199, Issue:1

    Inflammation in the lung can lead to increased expression of inducible nitric oxide synthase (iNOS) and enhanced NO production. It has been postulated that the resultant highly reactive NO metabolites may have an important role in host defence, although they might also contribute to tissue damage. However, in a number of inflammatory lung diseases, including bronchiectasis, iNOS expression is increased but no elevation of airway NO can be detected. A potential explanation for this finding is that NO is rapidly scavenged by reaction with superoxide radicals, forming peroxynitrite, which is preferentially metabolized via nitration and nitrosation reactions. To test this hypothesis, anaesthetized, specific pathogen-free rats were inoculated with Pseudomonas aeruginosa incorporated into agar beads (chronically infected group) or sterile agar beads (control group). Ten to 15 days later, the lungs were isolated and fixed. Pseudomonas organisms were isolated from the lungs of the chronically infected group. These lungs showed extensive inflammatory cell infiltration and tissue damage, which were not observed in control lungs. Expression of iNOS was increased in the chronically infected group when compared with the control group. However, the mean number of cells staining for nitrotyrosine in the chronically infected group was not significantly different from that in the controls, nor was there an excess of nitrotyrosine, nitrate, nitrite or nitrosothiol concentrations in the infected lungs. Thus, no evidence was found of increased NO metabolites in chronically infected lungs, including products of the peroxynitrite pathway. These findings suggest that chronic infection does not cause increased iNOS activity in the lung, despite increased expression of iNOS.

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cell Count; Chronic Disease; Fluorescent Antibody Technique; Lung; Lung Diseases; Male; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Pseudomonas Infections; Rats; Rats, Sprague-Dawley; Tyrosine

2003