3-nitrotyrosine has been researched along with Peritonitis* in 13 studies
13 other study(ies) available for 3-nitrotyrosine and Peritonitis
Article | Year |
---|---|
Diverse effects of parenteral arginine on systemic and local oxidant-antioxidant homeostasis and nitrosative stress in rats with subacute peritonitis.
The beneficial effects of arginine on oxidative stress have been previously reported; however, excess production of nitric oxide, an arginine metabolite, may cause hemodynamic instability and inflammatory response. Previous studies have demonstrated that parenteral arginine levels at 2%-4% of total calories may alleviate inflammation and enhance immunity, whereas greater than 6% of total calories may have adverse effects in rats with subacute peritonitis. Herein, we investigated the effects of parenteral arginine dose on lipid peroxidation (thiobarbituric acid reactive substances, TBARS) and antioxidant enzyme activities in the plasma and organs.. Male Wistar rats with cecal puncture-induced subacute peritonitis were infused with parenteral nutrition solutions containing 1.61% (CP group), 2.85% (LA group), 4.08% (MA group), and 6.54% (HA group) of total calories as arginine for 7 d. Healthy, orally fed rats (NC group) were used as references.. Subacute peritonitis significantly elevated the levels of nitrate, nitrite and TBARS in the plasma and decreased glutathione peroxidase activity in the kidneys. These changes were significantly reversed in the MA and HA groups. The MA and HA groups had significantly increased nitrotyrosine levels in the plasma. The LA, MA, and HA groups had significantly increased glutathione peroxidase activity in the plasma, cytochrome P450 levels in the liver, and nitrotyrosine levels in the heart and had significantly decreased TBARS levels in the kidneys compared with the CP group.. Our results suggest that parenteral arginine at a dose less than 4% of total calories may attenuate lipid peroxidation and increase antioxidant enzyme activities without leading to nitrosative stress in subacute peritonitis. Topics: Animals; Antioxidants; Arginine; Disease Models, Animal; Energy Intake; Homeostasis; Infusions, Parenteral; Kidney; Lipid Peroxidation; Male; Nitric Oxide; Oxidants; Oxidative Stress; Peritonitis; Rats; Rats, Wistar; Reactive Nitrogen Species; Reactive Oxygen Species; Severity of Illness Index; Tyrosine | 2014 |
Ascorbate protects against vascular leakage in cecal ligation and puncture-induced septic peritonitis.
Vascular leakage in multiple organs is a characteristic pathological change in sepsis. Our recent study revealed that ascorbate protects endothelial barrier function in microvascular endothelial cell monolayers through inhibiting serine/threonine protein phosphatase 2A (PP2A) activation (Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Free Radic Biol Med 48: 128-135, 2010). The present study addressed the mechanism of protection by ascorbate against vascular leakage in cecal ligation and puncture (CLP)-induced septic peritonitis in mice. CLP caused NADPH oxidase activation and endothelial nitric oxide synthase (eNOS) uncoupling to produce superoxide, increased NO production by inducible NOS (iNOS) and neuronal NOS (nNOS) activity, and elevated 3-nitrotyrosine (a product of peroxynitrite) formation and PP2A activity in the hindlimb skeletal muscles at 12 h after CLP. The increase in PP2A activity was associated with decreased levels of phosphorylated serine and threonine in occludin, which was immunoprecipitated from freshly harvested endothelial cells of the septic skeletal muscles. Moreover, CLP increased the vascular permeability to fluorescent dextran and Evans blue dye in skeletal muscles. An intravenous bolus injection of ascorbate (200 mg/kg body wt), given 30 min prior to CLP, prevented eNOS uncoupling, attenuated the increases in iNOS and nNOS activity, decreased 3-nitrotyrosine formation and PP2A activity, preserved the phosphorylation state of occludin, and completely inhibited the vascular leakage of dextran and Evans blue. A delayed ascorbate injection, given 3 h after CLP, also prevented the vascular permeability increase. We conclude that ascorbate injection protects against vascular leakage in sepsis by sequentially inhibiting excessive production of NO and superoxide, formation of peroxynitrite, PP2A activation, and occludin dephosphorylation. Our study provides a scientific basis for injection of ascorbate as an adjunct treatment for vascular leakage in sepsis. Topics: Animals; Antioxidants; Ascorbic Acid; Capillary Permeability; Cecum; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Muscle, Skeletal; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Occludin; Peritonitis; Protein Phosphatase 2; Sepsis; Superoxides; Tyrosine | 2012 |
The dose-dependent immunoregulatory effects of the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester in rats with sub-acute peritonitis.
Chronic inflammation accompanied by arginine deficiency, immune dysfunction, and excess nitric oxide (NO) production is a clinical condition found in patients with peritonitis. A previous study showed that the nonselective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) may facilitate the metabolism of the immune nutrient arginine without altering NO homeostasis in rats with sub-acute peritonitis. Here, we investigated the effects of L-NAME on the immunocytic subpopulation distribution and response.. Male Wistar rats with cecal puncture-induced peritonitis were administered parenteral nutrition solutions supplemented with 0 (CPP group), 5 (LNA group), 25 (MNA group) or 50 (HNA group) mg · kg(-1) · day(-1) of L-NAME for 7 days. Parenteral-fed sham-operated rats (TPN group) and orally-fed healthy rats (R group) were included as controls.. The TPN group had significantly increased spleen weights and levels of plasma nitrite/nitrate (NOx), circulating white blood cells (WBC), and splenocytic T cells, as well as significantly decreased levels of cytotoxic T- and B-leukocytes and B-splenocytes compared to the R group. The CPP group had significantly decreased levels of plasma NOx and concanavalin (Con) A-stimulated interferon (IFN)-γ and interleukin (IL)-2 production by leukocytes and significantly increased production of Con A-stimulated tumor necrosis factor (TNF)-α and lipopolysaccharide (LPS)-stimulated IFN-γ in the leukocytes. In addition, the LNA and MNA groups had significantly decreased spontaneous IL-6 and Con A-stimulated TNF-α and IFN-γ production by the leukocytes while the HNA group had significantly increased LPS-stimulated TNF-α and Con A-stimulated IFN-γ and IL-2 production by the splenocytes compared to the CPP group.. Low-dose L-NAME infusion may suppress proinflammatory and T-helper-1 (Th1) response in leukocytes, and high-dose infusion may activate the proinflammatory response in splenic macrophages and Th1 response in T-splenocytes in rats with sub-acute peritonitis. Topics: Acute Disease; Animals; Arginine; Body Weight; Cell Proliferation; Cytokines; Dose-Response Relationship, Drug; Humans; Immunomodulation; Infusions, Parenteral; Leukocyte Count; Leukocytes; Male; Nitrates; Nitric Oxide Synthase; Nitrites; Organ Size; Parenteral Nutrition; Peritonitis; Rats; Rats, Wistar; Spleen; Tyrosine | 2012 |
PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice.
PD98059 (MEK1 Inhibitor) has been shown to act in vivo as a highly selective inhibitor of MEK1 activation and the MAP kinase cascade. In the present study, we have investigated the effects of PD98059, on the development of non-septic shock caused by zymosan in mice. Mice received either intraperitoneally zymosan (500mg/kg, administered i.p. as a suspension in saline) or vehicle (0.25ml/mouse saline). PD98059 (10mg/kg) was administered 1 and 6h after zymosan administration i.p. Organ failure and systemic inflammation in mice was assessed 18h after administration of zymosan and/or PD98059. Treatment of mice with PD98059 attenuated the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan. PD98059 also attenuated the lung, liver and pancreatic injury and renal dysfunction caused by zymosan as well as the increase of TNF-alpha and IL-1beta plasma levels caused by zymosan. Immunohistochemical analysis for inducible nitric oxide synthase (iNOS), nitrotyrosine, poly(ADP-ribose) (PAR), ICAM-1, P-selectin, Bax, Bcl-2 and FAS-ligand revealed positive staining in pancreatic and intestinal tissue obtained from zymosan-injected mice. The degree of staining for nitrotyrosine, iNOS, PAR, ICAM-1, P-selectin, Bax, Bcl-2 and FAS-ligand were markedly reduced in tissue sections obtained from zymosan-injected mice, which had received PD98059. Moreover treatment of mice with PD98059 (10mg/kg) attenuated the NF-kappaB activation and mitogen-activated protein kinases (MAPK) expression induced by zymosan injection. In addition, administration of zymosan caused a severe illness in the mice characterized by a systemic toxicity, significant loss of body weight and a 60% of mortality at the end of observation period. Treatment with PD98059 significantly reduced the development of systemic toxicity, the loss in body weight and the mortality (20%) caused by zymosan. This study provides evidence that PD98059 attenuates the degree of zymosan-induced non-septic shock in mice. Topics: Acute Disease; Animals; Apoptosis; bcl-2-Associated X Protein; Cell Adhesion Molecules; Cytokines; Fas Ligand Protein; Flavonoids; I-kappa B Proteins; Inflammation Mediators; Male; Mice; Mitogen-Activated Protein Kinases; Multiple Organ Failure; Neutrophil Infiltration; NF-KappaB Inhibitor alpha; Nitric Oxide; Nitric Oxide Synthase Type II; p38 Mitogen-Activated Protein Kinases; Peritonitis; Phosphorylation; Poly(ADP-ribose) Polymerases; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Systemic Inflammatory Response Syndrome; Time Factors; Transcription Factor RelA; Tyrosine; Zymosan | 2010 |
Thalidomide suppresses sclerosing encapsulating peritonitis in a rat experimental model.
Peritoneal dialysis is an alternative treatment of patients with end-stage renal disease. Sclerosing encapsulating peritonitis is a life-threatening complication of continuous ambulatory peritoneal dialysis. The aim of the present study was to evaluate the effect of thalidomide, which is used for the treatment of various inflammatory and autoimmune diseases, on the development of sclerosing encapsulating peritonitis induced by chlorhexidine gluconate (CG). A peritoneal fibrosis model was established using rats treated intraperitoneally with injections of CG. Thalidomide was administered orally at a dose of 100 mg/kg three times per week. When compared with CG-treated rats, thalidomide (100 mg/kg orally)-treated mice subjected to CG-induced peritoneal fibrosis experienced a significantly lower rate in the extent and severity of histological signs of peritoneal injury. Thalidomide also caused a substantial reduction of 1) the rise in myeloperoxidase activity (mucosa); 2) the expression in the tissue of TNF-alpha, IL-1beta, transforming growth factor-beta, and vascular endothelial growth factor; 3) the increase in staining (immunohistochemistry) for nitrotyrosine and for poly(ADP ribose), as well as 4) the nuclear factor-kappaB activation caused by CG in the peritoneum. Thus, thalidomide treatment reduces the degree of peritoneal fibrosis caused by CG. We propose that this evidence may help clarify the potential therapeutic actions of thalidomide in patients with peritoneal fibrosis. Topics: Animals; Anti-Infective Agents; Blotting, Western; Chlorhexidine; Disease Models, Animal; Enzyme Activation; Gene Expression Regulation; I-kappa B Proteins; Immunohistochemistry; Immunosuppressive Agents; NF-kappa B; Nitric Oxide Synthase Type II; Peritonitis; Peroxidase; Poly Adenosine Diphosphate Ribose; Rats; Thalidomide; Thiobarbituric Acid Reactive Substances; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha; Tyrosine; Vascular Endothelial Growth Factor A | 2009 |
Methylguanidine reduces the development of non septic shock induced by zymosan in mice.
In the present study we evaluate the effect of methylguanidine (MG), a product of protein catabolism, in a model of acute inflammation (zymosan induced inflammation) in mice where oxyradical and nitric oxide (NO) play a crucial role. Our data show that MG, given intraperitoneally at the dose of 30 mg/Kg, inhibits the inflammatory response reducing significantly (P < 0.05) peritoneal exudates formation, mononuclear cell infiltration and histological injury in mice. Furthermore, our data suggests that there is a significant (P < 0.05) reduction in kidney, liver and pancreas injury as demonstrated by the reduction in amylase, lipase, creatinine, AST, ALT, bilirubine and alkaline phosfatase levels. MG is also able to reduce the appearance of nitrotyrosine and of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) synthase (PARS) immunoreactivity in the inflamed intestinal and lung tissues. The histological examination revealed a significant reduction in zymosan-induced intestinal and lung damage in MG-treated mice. Taken together, the present results demonstrate that MG exerts potent anti-inflammatory effects on zymosan-induced shock. Topics: Analysis of Variance; Animals; Disease Models, Animal; Exudates and Transudates; Immunohistochemistry; Intestinal Mucosa; Intestines; Kidney; Lipid Peroxidation; Lung; Male; Methylguanidine; Mice; Neutrophils; Pancreas; Peritonitis; Peroxidase; Peroxynitrous Acid; Poly(ADP-ribose) Polymerases; Shock; Tyrosine; Zymosan | 2004 |
Effects of calpain inhibitor I on multiple organ failure induced by zymosan in the rat.
Zymosan enhances the formation of reactive oxygen species, which contributes to the pathophysiology of multiple organ failure. We investigated the effects of calpain inhibitor I (5, 10, or 20 mg/kg) on the multiple organ failure caused by zymosan (500 mg/kg, administered intraperitoneally as a suspension in saline) in rats.. University research laboratory.. Male Sprague-Dawley rats.INTERVENTIONS Multiple organ failure in rats was assessed 18 hrs after administration of zymosan and/or calpain inhibitor I and was monitored for 12 days (for loss of body weight and mortality rate).. Treatment of rats with calpain inhibitor I (5, 10, or 20 mg/kg intraperitoneally, 1 and 6 hrs after zymosan) attenuated the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan in a dose-dependent fashion. Calpain inhibitor I also attenuated the lung, liver, and intestinal injury (histology) as well as the increase in myeloperoxidase activity and malondialdehyde concentrations caused by zymosan in the lung, liver, and intestine. Immunohistochemical analysis for nitrotyrosine and for poly(adenosine-disphosphate-ribose) revealed positive staining in lung, liver, and intestine from zymosan-treated rats. The degree of staining for nitrotyrosine and poly(adenosine-disphosphate-ribose) was reduced markedly in tissue sections obtained from zymosan-treated rats administered calpain inhibitor I (20 mg/kg intraperitoneally). Furthermore, treatment of rats with calpain inhibitor I significantly reduced the expression of inducible nitric oxide synthase and cyclooxygenase-2 in lung, liver, and intestine.. This study provides the first evidence that calpain inhibitor I attenuates the degree of zymosan-induced multiple organ failure in the rat. Topics: Animals; Calpain; Cell Movement; Cyclooxygenase 2; Dose-Response Relationship, Drug; Glycoproteins; Immunohistochemistry; Intestinal Mucosa; Intestines; Isoenzymes; Liver; Lung; Male; Malondialdehyde; Multiple Organ Failure; Neutrophils; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peritoneum; Peritonitis; Peroxidase; Peroxynitrous Acid; Poly Adenosine Diphosphate Ribose; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Sprague-Dawley; Tyrosine; Zymosan | 2002 |
Myeloperoxidase produces nitrating oxidants in vivo.
Despite intense interest in pathways that generate reactive nitrogen species, the physiologically relevant mechanisms for inflammatory tissue injury remain poorly understood. One possible mediator is myeloperoxidase, a major constituent of neutrophils, monocytes, and some populations of macrophages. The enzyme uses hydrogen peroxide and nitrite to generate 3-nitrotyrosine in vitro. To determine whether myeloperoxidase produces nitrating intermediates in vivo, we used isotope dilution gas chromatography/mass spectrometry to quantify 3-nitrotyrosine in two models of peritoneal inflammation: mice infected with Klebsiella pneumoniae and mice subjected to cecal ligation and puncture. Both models developed an intense neutrophil inflammatory response, and the inflammatory fluid contained markedly elevated levels of 3-chlorotyrosine, a marker of myeloperoxidase action. In striking contrast, 3-nitrotyrosine levels rose only in the mice infected with K. pneumoniae. Levels of total nitrite and nitrate were 20-fold higher in mice injected with K. pneumoniae than in mice subjected to cecal ligation and puncture. Levels of 3-nitrotyrosine failed to increase in mice infected with K. pneumoniae that lacked functional myeloperoxidase. Our observations provide strong evidence that myeloperoxidase generates reactive nitrogen species in vivo and that it operates in this fashion only when nitrite and nitrate become available. This article was published online in advance of the print edition. The date of publication is available from the JCI website, http://www.jci.org. Topics: Animals; Klebsiella Infections; Klebsiella pneumoniae; Mice; Peritonitis; Peroxidase; Reactive Nitrogen Species; Tyrosine | 2002 |
Propofol attenuates diaphragmatic dysfunction induced by septic peritonitis in hamsters.
Sepsis or peritonitis impairs diaphragmatic contractility and endurance capacity. Peroxynitrite, a powerful oxidant formed by superoxide and nitric oxide, has been implicated in the pathogenesis. Propofol scavenges this reactive molecule. The authors conducted the current study to evaluate whether propofol prevents diaphragmatic dysfunction induced by septic peritonitis.. Forty male Golden-Syrian hamsters (120-140 g) were randomly classified into five groups. Groups sham and sham-propofol 50 underwent sham laparotomy alone, whereas groups sepsis, sepsis-propofol 25, and sepsis-propofol 50 underwent cecal ligation with puncture. Groups sham and sepsis received infusion of intralipid, whereas groups sham-propofol 50, sepsis-propofol 25, and sepsis-propofol 50 received propofol at rates of 50, 25, and 50 mg.kg(-1).h(-1), respectively. Intralipid or propofol was subcutaneously infused from 3 h before surgery until 24 h after operation, when all hamsters were killed. Diaphragmatic contractility and fatigability were assessed in vitro using diaphragm muscle strips. Peroxynitrite formation in the diaphragm was assessed by nitrotyrosine immunostaining. Plasma nitrite-nitrate concentrations and diaphragmatic concentrations of malondialdehyde were determined. Using another set of animals, diaphragmatic inducible nitric oxide synthase activity was also measured.. Twitch, tetanic tensions, and tensions during fatigue trials were reduced in group sepsis compared with group sham. In group SEPSIS, diaphragm malondialdehyde and inducible nitric oxide synthase activity, and plasma nitrite-nitrate concentrations increased, and positive immunostaining for nitrotyrosine residues was found. Propofol attenuated these changes.. Pretreatment with propofol attenuated diaphragmatic dysfunction induced by septic peritonitis in hamsters assessed by contractile profiles and endurance capacity. This beneficial effect of propofol may be caused, in part, by inhibition of lipid peroxidation in the diaphragm caused by the powerful oxidant. Topics: Animals; Cricetinae; Diaphragm; Dose-Response Relationship, Drug; Endotoxins; Immunohistochemistry; In Vitro Techniques; Male; Mesocricetus; Muscle Contraction; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peritonitis; Propofol; Sepsis; Tyrosine | 2001 |
Inducible nitric oxide synthase knockout mice exhibit resistance to the multiple organ failure induced by zymosan.
In the present study, by comparing the responses in wild-type mice (+/+) and mice lacking (-/-) the inducible (or type 2) nitric oxide synthase (iNOS), we investigated the role played by iNOS in the development of non-septic shock. A severe inflammatory response characterized by peritoneal exudation, high peritoneal levels of nitrate/nitrite, and leukocyte infiltration into peritoneal exudate was induced by zymosan administration in iNOS +/+ mice. This inflammatory process coincided with the damage of lung, liver, and small intestine, as assessed by histological examination. Lung, small intestine, and liver myeloperoxidase (MPO) activity, indicative of neutrophil infiltration and lipid peroxidation, were significantly increased in zymosan-treated iNOS +/+ mice. Peritoneal administration of zymosan in the iNOS +/+ mice induced also a significant increase in the plasma levels of nitrite/nitrate and in the levels of peroxynitrite at 18 h after zymosan challenge. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine and to poly ADP-ribose synthetase (PARS) in the lung, liver, and intestine of zymosan-treated iNOS +/+ mice. The intensity and degree of nitrotyrosine and PARS were markedly reduced in tissue section from zymosan-iNOS -/- mice. Zymosan-treated iNOS -/- mice showed a significantly decreased mortality and inhibition of the development of peritonitis. In addition, iNOS -/- mice showed a significant protection on the development of organ failure since tissue injury and MPO were reduced in lung, small intestine, and liver. Furthermore, a significant reduction of suppression of mitochondrial respiration, DNA strand breakage, and reduction of cellular levels of NAD+ was observed in ex vivo macrophages harvested from the peritoneal cavity of iNOS -/- mice subjected to zymosan-induced non-septic shock. In vivo treatment with aminoguanidine (300 mg/kg 1 and 6 h after zymosan administration) significantly prevents the inflammatory process. Taken together, our results clearly demonstrate that iNOS plays an important role in zymosan-induced non-septic shock. Topics: Animals; Enzyme Inhibitors; Exudates and Transudates; Guanidines; Lipid Peroxidation; Liver; Lung; Macrophages, Peritoneal; Male; Mice; Mice, Knockout; Multiple Organ Failure; Nitrates; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Peritonitis; Peroxidase; Poly(ADP-ribose) Polymerases; Rhodamines; Shock; Tyrosine; Zymosan | 2001 |
Role of hyperbaric oxygen exposure in reduction of lipid peroxidation and in multiple organ failure induced by zymosan administration in the rat.
The aim of the present study was to evaluate the effects of hyperbaric oxygen (HBO) therapy on multiple organ failure induced by zymosan. Administration of zymosan (500 mg/kg) in the rat induced neutrophil infiltration in the lung, liver, and intestine as evaluated by increase in myeloperoxidase (MPO) activity. Therefore, lipid peroxidation was significantly increased in zymosan-treated rats. This inflammatory process coincided with the damage of lung, liver, and small intestine. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine in the lung, liver, and small intestine of zymosan-shocked rats. HBO (2 absolute Atmosphere) exposure attenuates the increase in the tissue levels of MPO and malondialdehyde (MDA) caused by zymosan in the lung, liver, and intestine. In addition, HBO (2 absolute Atmosphere) was effective in preventing the development of lung, liver, and intestine injury. Taken together, the present results demonstrate that HBO may also be an efficacious treatment in multiple organ failure induced by zymosan. Topics: Animals; Hyperbaric Oxygenation; Lipid Peroxidation; Male; Malondialdehyde; Multiple Organ Failure; Peritonitis; Peroxidase; Rats; Rats, Sprague-Dawley; Tyrosine; Zymosan | 2000 |
Role of interleukin-6 in a non-septic shock model induced by zymosan.
In the present study, we used IL-6 knock-out mice (IL-6KO) to evaluate a possible role of IL-6 in the pathogenesis of non-septic shock induced by peritoneal injection of zymosan. A severe inflammatory response characterized by peritoneal exudation, high peritoneal levels of nitrate/nitrite, and leukocyte infiltration into peritoneal exudate was induced by zymosan administration in wild-type control (WT) mice. This inflammatory process coincided with the damage to the lung and small intestine, as assessed by histological examination. Lung, small intestine and liver myeloperoxidase (MPO) activity, indicative of neutrophil infiltration and lipid peroxidation, were significantly increased in zymosan-treated WT mice. Peritoneal administration of zymosan in the WT mice also induced a significant increase in the plasma levels of nitrite/nitrate and in the levels of peroxynitrite, 18 hours after zymosan challenge. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine in the lung of zymosan-treated WT mice. Zymosan-treated IL-6KO showed significantly decreased mortality and inhibition of the development of peritonitis. In addition, IL-6KO mice showed significant protection from the development of organ failure, since tissue injury and MPO was reduced in the lung, small intestine and liver. Furthermore, a significant reduction of suppression of mitochondrial respiration, DNA strand breakage and reduction of cellular levels of NAD+ was observed in ex vivo macrophages harvested from the peritoneal cavity of IL-6KO mice subjected to zymosan-induced non-septic shock. In vivo treatment with anti-IL-6 (5,000 ng/day per mouse, 24 and 1 hour before zymosan administration) significantly reduced the inflammatory process. Taken together, the present study clearly demonstrates that IL-6 exerts a role in zymosan-induced non-septic shock. Topics: Animals; Antibodies, Monoclonal; Ascites; Ascitic Fluid; DNA Damage; Energy Metabolism; Injections, Intraperitoneal; Interleukin-6; Intestine, Small; Leukocyte Count; Lipid Peroxidation; Liver; Lung; Macrophage Activation; Macrophages, Peritoneal; Mice; Mice, Inbred C57BL; Mice, Knockout; Multiple Organ Failure; NAD; Neutrophils; Nitrates; Nitrites; Oxidative Phosphorylation; Peritonitis; Peroxidase; Shock; Tyrosine; Zymosan | 1999 |
Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis.
The loss of ultrafiltration (UF) that accompanies acute peritonitis is a common problem in peritoneal dialysis (PD). It has been suggested that changes in nitric oxide (NO)-mediated vascular tone and permeability might be involved in the loss of UF, whereas channel-mediated water permeability should not be affected. This study used a model of acute peritonitis in rats to characterize changes in PD parameters, in correlation with: (1) expression studies of water channel aquaporin-1 and NO synthase (NOS) isoforms and (2) enzymatic assays for NOS in the peritoneum. Compared with controls, rats with peritonitis had a higher removal of plasma urea, a faster glucose absorption, and a loss of UF. Additional changes, including high protein loss, elevated leukocyte counts in dialysate, positive bacterial cultures, edema, and mononuclear infiltrates, were similar to those observed in PD patients with acute peritonitis. Acute peritonitis in rats induced a major increase in total NOS activity, which was inversely correlated with free-water permeability. The increased NOS activity was mediated by both inducible (Ca2+-independent) and endothelial (Ca2+-dependent) NOS isoforms and was reflected by increased peritoneal staining for nitrotyrosine. In contrast, aquaporin-1 expression was unchanged in rats with peritonitis. These findings cast light on the pathophysiology of permeability changes and loss of UF that characterize acute peritonitis. In particular, these data suggest that a local production of NO, mediated by different NOS isoforms, might play a key role in these changes. Topics: Acute Disease; Analysis of Variance; Animals; Aquaporin 1; Aquaporins; Capillary Permeability; Disease Models, Animal; Endothelial Growth Factors; Immunoassay; Immunohistochemistry; Isoenzymes; Lymphokines; Male; Nitric Oxide Synthase; Peritoneal Dialysis; Peritoneum; Peritonitis; Protein Isoforms; Rats; Rats, Sprague-Dawley; Reference Values; Sensitivity and Specificity; Tyrosine; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors | 1999 |