3-nitrotyrosine has been researched along with Nerve-Degeneration* in 41 studies
41 other study(ies) available for 3-nitrotyrosine and Nerve-Degeneration
Article | Year |
---|---|
Role of energy metabolic deficits and oxidative stress in excitotoxic spinal motor neuron degeneration in vivo.
MN (motor neuron) death in amyotrophic lateral sclerosis may be mediated by glutamatergic excitotoxicity. Previously, our group showed that the microdialysis perfusion of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) in the rat lumbar spinal cord induced MN death and permanent paralysis within 12 h after the experiment. Here, we studied the involvement of energy metabolic deficiencies and of oxidative stress in this MN degeneration, by testing the neuroprotective effect of various energy metabolic substrates and antioxidants. Pyruvate, lactate, β-hydroxybutyrate, α-ketobutyrate and creatine reduced MN loss by 50-65%, preserved motor function and completely prevented the paralysis. Ascorbate, glutathione and glutathione ethyl ester weakly protected against motor deficits and reduced MN death by only 30-40%. Reactive oxygen species formation and 3-nitrotyrosine immunoreactivity were studied 1.5-2 h after AMPA perfusion, during the initial MN degenerating process, and no changes were observed. We conclude that mitochondrial energy deficiency plays a crucial role in this excitotoxic spinal MN degeneration, whereas oxidative stress seems a less relevant mechanism. Interestingly, we observed a clear correlation between the alterations of motor function and the number of damaged MNs, suggesting that there is a threshold of about 50% in the number of healthy MNs necessary to preserve motor function. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Antioxidants; Cell Death; Disease Models, Animal; Disease Progression; Lumbar Vertebrae; Male; Motor Activity; Motor Neurons; Nerve Degeneration; Neuroprotective Agents; Oxidative Stress; Paralysis; Rats; Rats, Wistar; Reactive Oxygen Species; Tyrosine | 2014 |
Reactive species and oxidative stress in optic nerve vulnerable to secondary degeneration.
Secondary degeneration contributes substantially to structural and functional deficits following traumatic injury to the CNS. While it has been proposed that oxidative stress is a feature of secondary degeneration, contributing reactive species and resultant oxidized products have not been clearly identified in vivo. The study is designed to identify contributors to, and consequences of, oxidative stress in a white matter tract vulnerable to secondary degeneration. Partial dorsal transection of the optic nerve (ON) was used to model secondary degeneration in ventral nerve unaffected by the primary injury. Reactive species were assessed using fluorescent labelling and liquid chromatography/tandem mass spectroscopy (LC/MS/MS). Antioxidant enzymes and oxidized products were semi-quantified immunohistochemically. Mitophagy was assessed by electron microscopy. Fluorescent indicators of reactive oxygen and/or nitrogen species increased at 1, 3 and 7days after injury, in ventral ON. LC/MS/MS confirmed increases in reactive species linked to infiltrating microglia/macrophages in dorsal ON. Similarly, immunoreactivity for glutathione peroxidase and haem oxygenase-1 increased in ventral ON at 3 and 7days after injury, respectively. Despite increased antioxidant immunoreactivity, DNA oxidation was evident from 1day, lipid oxidation at 3days, and protein nitration at 7days after injury. Nitrosative and oxidative damage was particularly evident in CC1-positive oligodendrocytes, at times after injury at which structural abnormalities of the Node of Ranvier/paranode complex have been reported. The incidence of mitochondrial autophagic profiles was also significantly increased from 3days. Despite modest increases in antioxidant enzymes, increased reactive species are accompanied by oxidative and nitrosative damage to DNA, lipid and protein, associated with increasing abnormal mitochondria, which together may contribute to the deficits of secondary degeneration. Topics: Analysis of Variance; Animals; Chromatography, Liquid; Disease Models, Animal; Ectodysplasins; Ethidium; Female; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Guanine; Microscopy, Electron, Transmission; Mitochondria; Myelin Basic Protein; Nerve Degeneration; Optic Nerve Injuries; Oxidative Stress; Rats; Reactive Oxygen Species; Tandem Mass Spectrometry; Time Factors; Tyrosine | 2014 |
Epicatechin blocks pro-nerve growth factor (proNGF)-mediated retinal neurodegeneration via inhibition of p75 neurotrophin receptor expression in a rat model of diabetes [corrected].
Accumulation of pro-nerve growth factor (NGF), the pro form of NGF, has been detected in neurodegenerative diseases. However, the role of proNGF in the diabetic retina and the molecular mechanisms by which proNGF causes retinal neurodegeneration remain unknown. The aim of this study was to elucidate the role of proNGF in neuroglial activation and to examine the neuroprotective effects of epicatechin, a selective inhibitor of tyrosine nitration, in an experimental rat model of diabetes.. Expression of proNGF and its receptors was examined in retinas from streptozotocin-induced diabetic rats, and in retinal Müller and retinal ganglion cells (RGCs). RGC death was assessed by TUNEL and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays in diabetic retinas and cell culture. Nitrotyrosine was determined using Slot-blot. Activation of the tyrosine kinase A (TrkA) receptor and p38 mitogen-activated protein kinase (p38MAPK) was assessed by western blot.. Diabetes-induced peroxynitrite impaired phosphorylation of TrkA-Y490 via tyrosine nitration, activated glial cells and increased expression of proNGF and its receptor, p75 neurotrophin receptor (p75(NTR)), in vivo and in Müller cells. These effects were associated with activation of p38MAPK, cleaved poly-(ADP-ribose) polymerase and RGC death. Treatment of diabetic animals with epicatechin (100 mg kg(-1) day(-1), orally) blocked these effects and restored neuronal survival. Co-cultures of RGCs with conditioned medium of activated Müller cells significantly reduced RGC viability (44%). Silencing expression of p75(NTR) by use of small interfering RNA protected against high glucose- and proNGF-induced apoptosis in RGC cultures.. Diabetes-induced peroxynitrite stimulates p75(NTR) and proNGF expression in Müller cells. It also impairs TrkA receptor phosphorylation and activates the p75(NTR) apoptotic pathway in RGCs, leading to neuronal cell death. These effects were blocked by epicatechin, a safe dietary supplement, suggesting its potential therapeutic use in diabetic patients. Topics: Animals; Blood Glucose; Blotting, Western; Body Weight; Catechin; Cell Line; In Situ Nick-End Labeling; Male; Nerve Degeneration; Nerve Growth Factor; Rats; Rats, Sprague-Dawley; Receptor, Nerve Growth Factor; Retina; Retinal Ganglion Cells; RNA, Small Interfering; Tyrosine | 2011 |
Neurodegeneration and increased production of nitrotyrosine, nitric oxide synthase, IFN-gamma and S100beta protein in the spinal cord of IL-12p40-deficient mice infected with Trypanosoma cruzi.
Chagas' disease is caused by Trypanosoma cruzi and occurs in most Latin American countries. The protozoan may colonize the central nervous system (CNS) of immune-compromised human hosts, thus causing neuronal disorders. Systemic control of the intracellular forms of the parasite greatly depends on the establishment of a TH1 response and subsequent nitric oxide (NO) release. At the CNS, it is known that low concentrations of NO promote neuronal survival and growth, while high concentrations exert toxic effects and neuron death. Accounting for NO production by astrocytes is the glia-derived factor S100beta, which is overproduced in some neurodegenerative diseases. In the current work, we studied the expression of NO, interferon (IFN)-gamma and S100beta in the spinal cord tissue of IL-12p40KO mice infected with T. cruzi, a model of neurodegenerative process.. IL-12p40KO and wild-type (WT) female mice infected with T. cruzi Sylvio X10/4 (10(5) trypomastigotes, intraperitoneally) were euthanized when IL-12p40KO individuals presented limb paralysis. Spinal cord sections were submitted to immunohistochemical procedures for localization of neurofilament, laminin, nitrotyrosine, NO synthases (NOS), IFN-gamma and S100beta. The total number of neurons was estimated by stereological analysis and the area and intensity of immunoreactivities were assessed by microdensitometric/morphometric image analysis.. No lesion was found in the spinal cord sections of WT mice, while morphological disarrangements, many inflammatory foci, enlarged vessels, amastigote nests and dying neurons were seen at various levels of IL-12p40KO spinal cord. Compared to WT mice, IL-12p40KO mice presented a decrement on total number of neurons (46.4%, p < 0.05) and showed increased values of immunoreactive area for nitrotyrosine (239%, p < 0.01) and NOS (544%, p < 0.001). Moreover, the intensity of nitrotyrosine (16%, p < 0.01), NOS (38%, p < 0.05) and S100beta (21%, p < 0.001) immunoreactivities were also augmented. No IFN-gamma-labeled cells were seen in WT spinal cord tissue, contrary to IL-12p40KO tissue that displayed inflammatory infiltrating cells and also some parenchymal cells positively labeled.. We suggest that overproduction of NO may account for neuronal death at the spinal cord of T. cruzi-infected IL-12p40KO mice and that IFN-gamma and S100beta may contribute to NOS activation in the absence of IL-12. Topics: Animals; Cells, Cultured; Chagas Disease; Disease Models, Animal; Female; Host-Parasite Interactions; Immunity, Innate; Inflammation Mediators; Interferon-gamma; Interleukin-12 Subunit p40; Mice; Mice, Inbred C57BL; Mice, Knockout; Myelitis; Nerve Degeneration; Nerve Growth Factors; Neurons; Nitric Oxide; Nitric Oxide Synthase Type I; Paraplegia; S100 Calcium Binding Protein beta Subunit; S100 Proteins; Spinal Cord; Trypanosoma cruzi; Tyrosine | 2010 |
Galectin-3 contributes to neonatal hypoxic-ischemic brain injury.
Inflammation induced by hypoxia-ischemia (HI) contributes to the development of injury in the newborn brain. In this study, we investigated the role of galectin-3, a novel inflammatory mediator, in the inflammatory response and development of brain injury in a mouse model for neonatal HI. Galectin-3 gene and protein expression was increased after injury and galectin-3 was located in activated microglia/macrophages. Galectin-3-deficient mice (gal3-/-) were protected from injury particularly in hippocampus and striatum. Microglia accumulation was increased in the gal3-/- mice but accompanied by decreased levels of total matrix metalloproteinase (MMP)-9 and nitrotyrosine. The protection and increase in microglial infiltration was more pronounced in male gal3-/- mice. Trophic factors and apoptotic markers did not significantly differ between groups. In conclusion, galectin-3 contributes to neonatal HI injury particularly in male mice. Our results indicate that galectin-3 exerts its effect by modulating the inflammatory response. Topics: Animals; Animals, Newborn; Brain; Disease Models, Animal; Encephalitis; Female; Galectin 3; Gliosis; Hypoxia-Ischemia, Brain; Inflammation Mediators; Male; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Nerve Degeneration; Tyrosine | 2010 |
N-methyl-D-aspartate receptor antagonists have variable affect in 3-nitropropionic acid toxicity.
There is accumulating evidence that excitotoxicity and oxidative stress resulting from excessive activation of glutamate (N-methyl-D-aspartate) NMDA receptors are major participants in striatal degeneration associated with 3-nitropropionic acid (3NP) administration. Although excitotoxic and oxidative mechanisms are implicated in 3NP toxicity, there are conflicting reports as to whether NMDA receptor antagonists attenuate or exacerbate the 3NP-induced neurodegeneration. In the present study, we investigated the involvement of NMDA receptors in striatal degeneration, protein oxidation and motor impairment following systemic 3NP administration. We examined whether NMDA receptor antagonists, memantine and ifenprodil, influence the neurotoxicity of 3NP. The development of striatal lesion and protein oxidation following 3NP administration is delayed by memantine but not affected by ifenprodil. However, in behavioral experiments, memantine failed to improve and ifenprodil exacerbated the motor deficits associated with 3NP toxicity. Together, these findings suggest caution in the application of NMDA receptor antagonists as a neuroprotective agent in neurodegenerative disorders associated with metabolic impairment. Topics: Adenosine Diphosphate; Animals; Corpus Striatum; Dizocilpine Maleate; Drug Interactions; Male; Memantine; Motor Activity; Nerve Degeneration; Neuroprotective Agents; Nitro Compounds; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Propionates; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Tyrosine | 2009 |
Age-related changes in dopamine transporters and accumulation of 3-nitrotyrosine in rhesus monkey midbrain dopamine neurons: relevance in selective neuronal vulnerability to degeneration.
Aging is the strongest risk factor for developing Parkinson's disease (PD). There is a preferential loss of dopamine (DA) neurons in the ventral tier of the substantia nigra (vtSN) compared to the dorsal tier and ventral tegmental area (VTA) in PD. Examining age-related and region-specific differences in DA neurons represents a means of identifying factors potentially involved in vulnerability or resistance to degeneration. Nitrative stress is among the factors potentially underlying DA neuron degeneration. We studied the relationship between 3-nitrotyrosine (3NT; a marker of nitrative damage) and DA transporters [DA transporter (DAT) and vesicular monoamine transporter-2 (VMAT)] during aging in DA subregions of rhesus monkeys. The percentage of DA neurons containing 3NT increased significantly only in the vtSN with advancing age, and the vtSN had a greater percentage of 3NT-positive neurons when compared to the VTA. The relationship between 3NT and DA transporters was determined by measuring fluorescence intensity of 3NT, DAT and VMAT staining. 3NT intensity increased with advancing age in the vtSN. Increased DAT, VMAT and DAT/VMAT ratios were associated with increased 3NT in individual DA neurons. These results suggest nitrative damage accumulates in midbrain DA neurons with advancing age, an effect exacerbated in the vulnerable vtSN. The capacity of a DA neuron to accumulate more cytosolic DA, as inferred from DA transporter expression, is related to accumulation of nitrative damage. These findings are consistent with a role for aging-related accrual of nitrative damage in the selective vulnerability of vtSN neurons to degeneration in PD. Topics: Aging; Animals; Cytosol; Dopamine Plasma Membrane Transport Proteins; Fluorescent Antibody Technique; Immunohistochemistry; Macaca mulatta; Nerve Degeneration; Neurons; Substantia Nigra; Tyrosine; Ventral Tegmental Area; Vesicular Monoamine Transport Proteins | 2008 |
The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord.
Elevated concentrations of nitric oxide (NO) and peroxynitrite (ONOO(-)) are present within the CNS following neurotrauma and are implicated in the pathogenesis of the accompanying neurologic deficits. We tested the hypothesis that elevated extracellular concentrations of ONOO(-), introduced by the donor 3-morpholinosydnonimine (SIN-1), induce reversible axonal conduction deficits in neurons of the guinea-pig spinal cord. The compound action potential (CAP) and compound membrane potential (CMP) of excised ventral cord white matter were recorded before, during, and after, bathing the tissue (30 min) in varying concentrations (0.125-2.0 mM) of SIN-1 (3.75-60 microM ONOO(-)). The principal results were rapid onset, concentration-dependent, reductions in amplitude of the CAP (P<0.05). At a concentration of 0.25 mM of SIN-1 the reduction in CAP amplitude was fully reversible and was not accompanied by any changes in CMP. At higher concentrations of SIN-1 (> or =0.5 mM) the reversibility was incomplete and there was concurrent depolarization of the CMP. These electrophysiological changes were not evident when the donor had been a priori depleted of ONOO(-) by uric acid or was co-administered with the ONOO(-) scavenger ebselen (3 mM). Immuno-fluorescence staining for nitrotyrosine (Ntyr) revealed extensive nitration of tyrosine residues in neurons exposed to higher concentrations of SIN-1. These results are the first to demonstrate that ONOO(-) induces reversible conduction deficits within axons of the spinal cord. The dissociation of CAP and CMP changes at low concentrations of SIN-1, when the CAP changes were reversible and there was no evidence of nitration of tyrosine residues, is consistent with ONOO(-)-induced alteration in Na+ channel conductance in the axolemma. The results support the view that ONOO(-) contributes to both reversible and non-reversible neurologic deficits following neurotrauma. The reversal of immune-mediated conduction deficits may contribute to spontaneous neurologic deficits following neurotrauma. Topics: Action Potentials; Animals; Axons; Cell Membrane; Dose-Response Relationship, Drug; Extracellular Fluid; Female; Guinea Pigs; Molsidomine; Nerve Degeneration; Neural Conduction; Neurons; Nitric Oxide; Nitric Oxide Donors; Nitro Compounds; Peroxynitrous Acid; Sodium Channels; Spinal Cord; Spinal Cord Injuries; Tyrosine | 2008 |
Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage.
Intracerebral hemorrhage (ICH) remains a major medical problem and currently has no effective treatment. Hemorrhaged blood is highly toxic to the brain, and catabolism of the pro-oxidant heme, mainly released from hemoglobin, is critical for the resolution of hematoma after ICH. The degradation of the pro-oxidant heme is controlled by heme oxygenase (HO). We have previously reported a neuroprotective role for HO2 in early brain injury after ICH; however, in vivo data that specifically address the role of HO2 in brain edema and neuroinflammation after ICH are absent. Here, we tested the hypothesis that HO2 deletion would exacerbate ICH-induced brain edema, neuroinflammation, and oxidative damage. We subjected wild-type (WT) and HO2 knockout ((-/-)) mice to the collagenase-induced ICH model. Interestingly, HO2(-/-) mice had enhanced brain swelling and neuronal death, although HO2 deletion did not increase collagenase-induced bleeding; the exacerbation of brain injury in HO2(-/-) mice was also associated with increases in neutrophil infiltration, microglial/macrophage and astrocyte activation, DNA damage, peroxynitrite production, and cytochrome c immunoreactivity. In addition, we found that hemispheric enlargement was more sensitive than brain water content in the detection of subtle changes in brain edema formation in this model. Combined, these novel findings extend our previous observations and demonstrate that HO2 deficiency increases brain swelling, neuroinflammation, and oxidative damage. The results provide additional evidence that HO2 plays a critical protective role against ICH-induced early brain injury. Topics: Analysis of Variance; Animals; Brain Edema; Calcium-Binding Proteins; Cerebral Hemorrhage; Cytochromes c; Disease Models, Animal; Encephalitis; Fluoresceins; Functional Laterality; Glial Fibrillary Acidic Protein; Granulocyte Colony-Stimulating Factor; Heme Oxygenase (Decyclizing); Interleukin-3; Mice; Mice, Inbred C57BL; Mice, Knockout; Microfilament Proteins; Nerve Degeneration; Organic Chemicals; Recombinant Fusion Proteins; Recombinant Proteins; Spectrophotometry; Time Factors; Tyrosine | 2008 |
D-glucose induces microtubular changes in C1300 neuroblastoma cell line through the incorporation of 3-nitro-L-tyrosine into tubulin.
The microtubular network of neurons is involved in several functions such as formation and tropism of cellular processes, cell division and intracellular transport. A lot of evidences testify that the microtubular network of neurons can be impaired by oxidative stress. A condition of oxidative stress is often possible when D-glucose overloads its metabolic pathway, resulting in an increase in reactive oxygen species and subsequent neurological disorders. The aim of this work was to check in undifferentiated mouse neuroblastoma cells (C1300) the possible oxidative effects of D-glucose on microtubules. Using a concentration of 110mM D-glucose, cell morphology, growth rate, viability and catalase activity were seriously altered. Noteworthy, an increase in 3-nitro-L-tyrosine and a downregulation of tubulins was found in D-glucose-exposed cells, whereas another cytoskeletal proteins, namely actin, did not show any changes. In conclusion, microtubular network can be impaired by D-glucose through specific nitrosative effects, suggesting a possible mechanism at the basis of hyperglycemia-induced neuronal damage. Topics: Actins; Animals; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cytoskeleton; Down-Regulation; Energy Metabolism; Glucose; Hyperglycemia; Mice; Microtubules; Nerve Degeneration; Neuroblastoma; Neurons; Oxidative Stress; Tubulin; Tyrosine | 2008 |
DJ-1 protects against neurodegeneration caused by focal cerebral ischemia and reperfusion in rats.
Reactive oxygen species (ROS) is massively produced in the brain after cerebral ischemia and reperfusion. It reacts strongly with cellular components, which has detrimental effects and leads to neuronal cell death. DJ-1, which was found to be the causative gene of familial Parkinson's disease PARK7, is a multifunction protein, which plays a key role in transcriptional regulation, and a molecular chaperone. In this study, we investigated the neuroprotective effect of DJ-1 against neurodegeneration caused by ischemia/reperfusion injury. Cerebral ischemia was induced in rats by 120 mins of middle cerebral artery occlusion (MCAO) using an intraluminal introduction method. The intrastriatal injection of recombinant glutathione S-transferase-tagged human DJ-1 (GST-DJ-1) markedly reduced infarct size in 2,3,5-triphenyltetrazolium chloride staining at 3 days after MCAO. In addition, we performed a noninvasive evaluation of ischemic size using magnetic resonance imaging and found a significant reduction of infarct size with the administration of GST-DJ-1. In GST-DJ-1-treated rats, behavioral dysfunction and nitrotyrosine formation were significantly inhibited. Furthermore, GST-DJ-1 markedly inhibited H(2)O(2)-mediated ROS production in SH-SY5Y cells. These results indicate that GST-DJ-1 exerts a neuroprotective effect by reducing ROS-mediated neuronal injury, suggesting that DJ-1 may be a useful therapeutic target for ischemic neurodegeneration. Topics: Animals; Behavior, Animal; Cerebral Infarction; Humans; Intracellular Signaling Peptides and Proteins; Magnetic Resonance Imaging; Nerve Degeneration; Oncogene Proteins; Protein Deglycase DJ-1; Rats; Reactive Oxygen Species; Reperfusion Injury; Tyrosine | 2008 |
Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes.
Recently we have shown that diabetes-induced retinal neurodegeneration positively correlates with oxidative stress and peroxynitrite. Studies also show that peroxynitrite impairs nerve growth factor (NGF) survival signaling in sensory neurons. However, the causal role of peroxynitrite and the impact of tyrosine nitration on diabetes-induced retinal neurodegeneration and NGF survival signaling have not been elucidated.. Expression of NGF and its receptors was examined in retinas from human and streptozotocin-induced diabetic rats and retinal ganglion cells (RGCs). Diabetic animals were treated with FeTPPS (15 mg x kg(-1) x day(-1) ip), which catalytically decomposes peroxynitrite to nitrate. After 4 weeks of diabetes, retinal cell death was determined by TUNEL assay. Lipid peroxidation and nitrotyrosine were determined using MDA assay, immunofluorescence, and Slot-Blot analysis. Expression of NGF and its receptors was determined by enzyme-linked immunosorbent assay (ELISA), real-time PCR, immunoprecipitation, and Western blot analyses.. Analyses of retinal neuronal death and NGF showed ninefold and twofold increases, respectively, in diabetic retinas compared with controls. Diabetes also induced increases in lipid peroxidation, nitrotyrosine, and the pro-apoptotic p75(NTR) receptor in human and rat retinas. These effects were associated with tyrosine nitration of the pro-survival TrkA receptor, resulting in diminished phosphorylation of TrkA and its downstream target, Akt. Furthermore, peroxynitrite induced neuronal death, TrkA nitration, and activation of p38 mitogen-activated protein kinase (MAPK) in RGCs, even in the presence of exogenous NGF. FeTPPS prevented tyrosine nitration, restored NGF survival signal, and prevented neuronal death in vitro and in vivo.. Together, these data suggest that diabetes-induced peroxynitrite impairs NGF neuronal survival by nitrating TrkA receptor and enhancing p75(NTR) expression. Topics: Animals; Cadaver; Cell Death; Diabetes Mellitus; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Humans; Lipid Peroxidation; Middle Aged; Nerve Degeneration; Nerve Growth Factor; Optic Nerve; Peroxynitrous Acid; Rats; Reference Values; Retinal Ganglion Cells; RNA, Messenger; Streptozocin; Tyrosine | 2008 |
Oxidative imbalance in the aging inner ear.
The mammalian inner ear loses its sensory cells with advancing age, accompanied by a functional decrease in balance and hearing. This study investigates oxidant stress in the cochlea of aging male CBA/J mice. Glutathione-conjugated proteins, markers of H2O2-mediated oxidation, began to increase at 12 months of age; 4-hydroxynonenal and 3-nitrotyrosine, products of hydroxyl radical and peroxynitrite action, respectively, were elevated by 18 months. Immunoreactivity to these markers was stronger in the supporting cells (Deiters and pillar cells) than the sensory cells and appeared later (23 months) in spiral ganglion cells and in the stria vascularis and spiral ligament. Conversely, antioxidant proteins (AIF) and enzymes (SOD2) decreased by 18 months in the organ of Corti (including the sensory cells) and spiral ganglion cells but not in the stria vascularis. These results suggest the presence of different reactive oxygen species and differential time courses of oxidative changes in individual tissues of the aging cochlea. An imbalance of redox status may be a component of age-related hearing loss. Topics: Aging; Aldehydes; Animals; Apoptosis Inducing Factor; Biomarkers; Cochlea; Free Radicals; Hair Cells, Auditory; Male; Mice; Mice, Inbred CBA; Nerve Degeneration; Neurons, Afferent; Organ of Corti; Oxidative Stress; Spiral Ganglion; Superoxide Dismutase; Tyrosine | 2007 |
Role of peroxynitrite in secondary oxidative damage after spinal cord injury.
Peroxynitrite (PON, ONOO(-)), formed by nitric oxide synthase-generated nitric oxide radical ( NO) and superoxide radical (O(2) (-)), is a crucial player in post-traumatic oxidative damage. In the present study, we determined the spatial and temporal characteristics of PON-derived oxidative damage after a moderate contusion injury in rats. Our results showed that 3-nitrotyrosine (3-NT), a specific marker for PON, rapidly accumulated at early time points (1 and 3 h) and a significant increase compared with sham rats was sustained to 1 week after injury. Additionally, there was a coincident and maintained increase in the levels of protein oxidation-related protein carbonyl and lipid peroxidation-derived 4-hydroxynonenal (4-HNE). The peak increases of 3-NT and 4-HNE were observed at 24 h post-injury. In our immunohistochemical results, the co-localization of 3-NT and 4-HNE results indicates that PON is involved in lipid peroxidative as well as protein nitrative damage. One of the consequences of oxidative damage is an exacerbation of intracellular calcium overload, which activates the cysteine protease calpain leading to the degradation of several cellular targets including cytoskeletal protein (alpha-spectrin). Western blot analysis of alpha-spectrin breakdown products showed that the 145-kDa fragments of alpha-spectrin, which are specifically generated by calpain, were significantly increased as soon as 1 h following injury although the peak increase did not occur until 72 h post-injury. The later activation of calpain is most likely linked to PON-mediated secondary oxidative impairment of calcium homeostasis. Scavengers of PON, or its derived free radical species, may provide an improved antioxidant neuroprotective approach for the treatment of post-traumatic oxidative damage in the injured spinal cord. Topics: Aldehydes; Animals; Biomarkers; Calcium Signaling; Calpain; Disease Progression; Female; Free Radical Scavengers; Free Radicals; Lipid Peroxidation; Nerve Degeneration; Nitric Oxide; Oxidative Stress; Peptide Fragments; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Spectrin; Spinal Cord Injuries; Time Factors; Tyrosine; Up-Regulation | 2007 |
Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer's disease.
Oxidative stress has been shown to underlie neuropathological aspects of Alzheimer's disease (AD). 4-Hydroxy-2-nonenal (HNE) is a highly reactive product of lipid peroxidation of unsaturated lipids. HNE-induced oxidative toxicity is a well-described model of oxidative stress-induced neurodegeneration. GSH plays a key role in antioxidant defense, and HNE exposure causes an initial depletion of GSH that leads to gradual toxic accumulation of reactive oxygen species. In the current study, we investigated whether pretreatment of cortical neurons with acetyl-L-carnitine (ALCAR) and alpha-lipoic acid (LA) plays a protective role in cortical neuronal cells against HNE-mediated oxidative stress and neurotoxicity. Decreased cell survival of neurons treated with HNE correlated with increased protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (HNE) accumulation. Pretreatment of primary cortical neuronal cultures with ALCAR and LA significantly attenuated HNE-induced cytotoxicity, protein oxidation, lipid peroxidation, and apoptosis in a dose-dependent manner. Additionally, pretreatment of ALCAR and LA also led to elevated cellular GSH and heat shock protein (HSP) levels compared to untreated control cells. We have also determined that pretreatment of neurons with ALCAR and LA leads to the activation of phosphoinositol-3 kinase (PI3K), PKG, and ERK1/2 pathways, which play essential roles in neuronal cell survival. Thus, this study demonstrates a cross talk among the PI3K, PKG, and ERK1/2 pathways in cortical neuronal cultures that contributes to ALCAR and LA-mediated prosurvival signaling mechanisms. This evidence supports the pharmacological potential of cotreatment of ALCAR and LA in the management of neurodegenerative disorders associated with HNE-induced oxidative stress and neurotoxicity, including AD. Topics: Acetylcarnitine; Aldehydes; Alzheimer Disease; Animals; Apoptosis; Cell Survival; Cerebral Cortex; Cyclic GMP-Dependent Protein Kinases; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Lipid Peroxidation; Nerve Degeneration; Neurons; Neuroprotective Agents; Oxidation-Reduction; Oxidative Stress; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Signal Transduction; Thioctic Acid; Tyrosine | 2007 |
Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury.
We assessed the temporal and spatial characteristics of PN-induced oxidative damage and its relationship to calpain-mediated cytoskeletal degradation and neurodegeneration in a severe unilateral controlled cortical impact (CCI) traumatic brain injury (TBI) model. Quantitative temporal time course studies were performed to measure two oxidative damage markers: 3-nitrotyrosine (3NT) and 4-hydroxynonenal (4HNE) at 30 min, 1, 3, 6, 12, 24, 48, 72 h and 7 days after injury in ipsilateral cortex of young adult male CF-1 mice. Secondly, the time course of Ca(++)-activated, calpain-mediated proteolysis was also analyzed using quantitative western-blot measurement of breakdown products of the cytoskeletal protein alpha-spectrin. Finally, the time course of neurodegeneration was examined using de Olmos silver staining. Both oxidative damage markers increased in cortical tissue immediately after injury (30 min) and elevated for the first 3-6 h before returning to baseline. In the immunostaining study, the PN-selective marker, 3NT, and the lipid peroxidation marker, 4HNE, were intense and overlapping in the injured cortical tissue. alpha-Spectrin breakdown products, which were used as biomarker for calpain-mediated cytoskeletal degradation, were also increased after injury, but the time course lagged behind the peak of oxidative damage and did not reach its maximum until 24 h post-injury. In turn, cytoskeletal degradation preceded the peak of neurodegeneration which occurred at 48 h post-injury. These studies have led us to the hypothesis that PN-mediated oxidative damage is an early event that contributes to a compromise of Ca(++) homeostatic mechanisms which causes a massive Ca(++) overload and calpain activation which is a final common pathway that results in post-traumatic neurodegeneration. Topics: Aldehydes; Animals; Brain; Brain Injuries; Calcium; Calpain; Cerebral Cortex; Cytoskeleton; Lipid Peroxidation; Male; Mice; Mice, Inbred Strains; Nerve Degeneration; Nerve Tissue Proteins; Nitrates; Oxidative Stress; Peroxynitrous Acid; Spectrin; Time Factors; Tissue Distribution; Tyrosine | 2007 |
Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury.
Manganese superoxide dismutase (MnSOD) provides the first line of defense against superoxide generated in mitochondria. SOD competes with nitric oxide for reaction with superoxide and prevents generation of peroxynitrite, a potent oxidant that can modify proteins to form 3-nitrotyrosine. Thus, sufficient amounts of catalytically competent MnSOD are required to prevent mitochondrial damage. Increased nitrotyrosine immunoreactivity has been reported after traumatic brain injury (TBI); however, the specific protein targets containing modified tyrosine residues and functional consequence of this modification have not been identified. In this study, we show that MnSOD is a target of tyrosine nitration that is associated with a decrease in its enzymatic activity after TBI in mice. Similar findings were obtained in temporal lobe cortical samples obtained from TBI cases versus control patients who died of causes not related to CNS trauma. Increased nitrotyrosine immunoreactivity was detected at 2 h and 24 h versus 72 h after experimental TBI and co-localized with the neuronal marker NeuN. Inhibition and/or genetic deficiency of neuronal nitric oxide synthase (nNOS) but not endothelial nitric oxide synthase (eNOS) attenuated MnSOD nitration after TBI. At 24 h after TBI, there was predominantly polymorphonuclear leukocytes accumulation in mouse brain whereas macrophages were the predominant inflammatory cell type at 72 h after injury. However, a selective inhibitor or genetic deficiency of inducible nitric oxide synthase (iNOS) failed to affect MnSOD nitration. Nitration of MnSOD is a likely consequence of peroxynitrite within the intracellular milieu of neurons after TBI. Nitration and inactivation of MnSOD could lead to self-amplification of oxidative stress in the brain progressively enhancing peroxynitrite production and secondary damage. Topics: Adolescent; Adult; Aged; Animals; Brain; Brain Injuries; Chemotaxis, Leukocyte; Encephalitis; Enzyme Activation; Enzyme Inhibitors; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Nerve Degeneration; Nitrates; Nitric Oxide Synthase Type I; Oxidative Stress; Peroxynitrous Acid; Superoxide Dismutase; Tyrosine | 2007 |
In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid beta-peptide (1-42)-induced oxidative stress.
Considerable evidence supports the role of oxidative stress in the pathogenesis of Alzheimer's disease. One hallmark of Alzheimer's disease is the accumulation of amyloid beta-peptide, which invokes a cascade of oxidative damage to neurons that can eventually result in neuronal death. Amyloid beta-peptide is the main component of senile plaques and generates free radicals ultimately leading to neuronal damage of membrane lipids, proteins and nucleic acids. Therefore, interest in the protective role of different antioxidant compounds has been growing for treatment of Alzheimer's disease and other oxidative stress-related disorders. Among different antioxidant drugs, much interest has been devoted to "thiol-delivering" compounds. Tricyclodecan-9-yl-xanthogenate is an inhibitor of phosphatidylcholine specific phospholipase C, and recent studies reported its ability to act as a glutathione-mimetic compound. In the present study, we investigate the in vivo ability of tricyclodecan-9-yl-xanthogenate to protect synaptosomes against amyloid beta-peptide-induced oxidative stress. Gerbils were injected i.p. with tricyclodecan-9-yl-xanthogenate or with saline solution, and synaptosomes were isolated from the brain. Synaptosomal preparations isolated from tricyclodecan-9-yl-xanthogenate injected gerbils and treated ex vivo with amyloid beta-peptide (1-42) showed a significant decrease of oxidative stress parameters: reactive oxygen species levels, protein oxidation (protein carbonyl and 3-nitrotyrosine levels) and lipid peroxidation (4-hydroxy-2-nonenal levels). Our results are consistent with the hypothesis that modulation of free radicals generated by amyloid beta-peptide might represent an efficient therapeutic strategy for treatment of Alzheimer's disease and other oxidative-stress related disorders. Based on the above data, we suggest that tricyclodecan-9-yl-xanthogenate is a potent antioxidant and could be of importance for the treatment of Alzheimer's disease and other oxidative stress-related disorders. Topics: Aldehydes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antioxidants; Brain; Bridged-Ring Compounds; Disease Models, Animal; Free Radicals; Gerbillinae; Lipid Peroxidation; Male; Nerve Degeneration; Neurons; Norbornanes; Oxidative Stress; Peptide Fragments; Reactive Oxygen Species; Synaptosomes; Thiocarbamates; Thiones; Type C Phospholipases; Tyrosine | 2006 |
Time course of post-traumatic mitochondrial oxidative damage and dysfunction in a mouse model of focal traumatic brain injury: implications for neuroprotective therapy.
In the present study, we investigate the hypothesis that mitochondrial oxidative damage and dysfunction precede the onset of neuronal loss after controlled cortical impact traumatic brain injury (TBI) in mice. Accordingly, we evaluated the time course of post-traumatic mitochondrial dysfunction in the injured cortex and hippocampus at 30 mins, 1, 3, 6, 12, 24, 48, and 72 h after severe TBI. A significant decrease in the coupling of the electron transport system with oxidative phosphorylation was observed as early as 30 mins after injury, followed by a recovery to baseline at 1 h after injury. A statistically significant (P<0.0001) decline in the respiratory control ratio was noted at 3 h, which persisted at all subsequent time-points up to 72 h after injury in both cortical and hippocampal mitochondria. Structural damage seen in purified cortical mitochondria included severely swollen mitochondria, a disruption of the cristae and rupture of outer membranes, indicative of mitochondrial permeability transition. Consistent with this finding, cortical mitochondrial calcium-buffering capacity was severely compromised by 3 h after injury, and accompanied by significant increases in mitochondrial protein oxidation and lipid peroxidation. A possible causative role for reactive nitrogen species was suggested by the rapid increase in cortical mitochondrial 3-nitrotyrosine levels shown as early as 30 mins after injury. These findings indicate that post-traumatic oxidative lipid and protein damage, mediated in part by peroxynitrite, occurs in mitochondria with concomitant ultrastructural damage and impairment of mitochondrial bioenergetics. The data also indicate that compounds which specifically scavenge peroxynitrite (ONOO(-)) or ONOO(-)-derived radicals (e.g. ONOO(-)+H(+) --> ONOOH --> (*)NO(2)+(*)OH) may be particularly effective for the treatment of TBI, although the therapeutic window for this neuroprotective approach might only be 3 h. Topics: Animals; Blotting, Northern; Brain Hemorrhage, Traumatic; Calpain; Cytoskeleton; Male; Membrane Lipids; Membrane Proteins; Mice; Microscopy, Electron; Mitochondria; Nerve Degeneration; Neuroprotective Agents; Oxidative Stress; Oxygen Consumption; Peroxynitrous Acid; Reactive Oxygen Species; Tyrosine | 2006 |
Neuroprotection by selective inhibition of inducible nitric oxide synthase after experimental brain contusion.
The inflammatory response is thought to be important for secondary damage following traumatic brain injury (TBI). The inducible nitric oxide synthase (iNOS) isoform is a mediator in inflammatory reactions and may catalyze substantial synthesis of NO in the injured brain. This study was undertaken to analyze neuronal degeneration and survival, cellular apoptosis and formation of nitrotyrosine following treatment with the iNOS-inhibitor L-N-iminoethyl-lysine (L-NIL) in a model of brain contusion. A brain contusion was produced using a weight-drop device in 30 rats. The animals received treatment with L-NIL or NaCl at 15 min and 12 h after the injury and were sacrificed at 24 h or 6 days after trauma. iNOS activity was measured at 24 h post-trauma by the conversion of L-[U- ( 14 )C]arginine to L-[U-( 14 )C]citrulline and immunohistochemistry for iNOS. Peroxynitrite formation was indirectly assessed by nitrotyrosine (NT) immunohistochemistry. Neuronal degeneration and survival were assessed by Fluoro-Jade (FJ) and NeuN stainings, and cellular death by TUNEL staining. iNOS activity but not iNOS immunoreactivity was significantly reduced in animals that received L-NIL. Neuronal degeneration (FJ) and NT immunoreactivity were significantly reduced at 24 h. Neuronal survival was unchanged at 24 h but increased at 6 days in L-NIL-treated animals. Cellular apoptosis of ED-1 and NeuN positive cells was significantly reduced following L-NIL treatment at 6 days after trauma. We demonstrated neuroprotection by selective inhibition of iNOS after trauma. L-NIL appeared to protect the injured brain by limiting peroxynitrite formation. Our findings support a putative harmful role of iNOS induction early after TBI. Topics: Animals; Apoptosis; Brain Injuries; Cell Survival; Disease Models, Animal; Female; Lysine; Nerve Degeneration; Neurons; Nitric Oxide Synthase Type II; Rats; Rats, Sprague-Dawley; Time Factors; Tyrosine | 2006 |
Oxidative injury by peroxynitrite in neural and vascular tissue of the lateral geniculate nucleus in experimental glaucoma.
In glaucoma, recent studies show that neural degeneration extends beyond the retinal ganglion cells to include target neurons in the lateral geniculate nucleus of the brain. The pathobiology of LGN degeneration in glaucoma is as yet unknown. We investigated whether peroxynitrite-mediated oxidative stress plays a role in glaucomatous degeneration of the LGN. Nitrotyrosine (NT), a marker for peroxynitrite-mediated oxidative injury, was studied in right LGN sections from monkeys with experimental unilateral glaucoma in the right eye and from normal controls. Immunoreactivity for NT was analyzed using bright-field microscopy. The density of NT profiles localized in neural tissue was determined for LGN layers (2,3,5) connected to the glaucoma eye and LGN layers (1,4,6) connected to the non-glaucoma eye. Density was calculated for each LGN layer by dividing the number of NT profiles by the cross-sectional area of each LGN layer. Blood vessels in each LGN were examined for NT formation. NT formation was detected in LGN layers of all monkeys with glaucoma. Quantitative analysis revealed that compared to controls, the density of NT profiles was increased in monkeys with glaucoma in LGN layers connected to glaucoma and non-glaucoma eyes. The mean density of NT profiles (+/-SEM) in neural tissue was significantly increased in glaucoma LGN layers compared to those of controls (2.30+/-0.56 vs. 0.29+/-0.12; P=0.016). Nitrotyrosine was readily apparent in LGN blood vessel endothelium in glaucoma, and not detected in blood vessels of control LGNs. The presence of NT in neural and vascular tissue of the glaucomatous LGN implicates peroxynitrite-mediated oxidative cell injury in the pathobiology of central neural degeneration in glaucoma. Topics: Animals; Endothelium, Vascular; Geniculate Bodies; Glaucoma; Immunohistochemistry; Macaca fascicularis; Macaca mulatta; Nerve Degeneration; Neurons; Oxidative Stress; Peroxynitrous Acid; Tyrosine | 2005 |
Nitration and increased alpha-synuclein expression associated with dopaminergic neurodegeneration in equine pituitary pars intermedia dysfunction.
Equine pituitary pars intermedia dysfunction (PPID) is a spontaneously occurring progressive disease affecting aged horses and ponies. The pathogenesis of PPID is poorly understood, but the available evidence supports a loss of dopaminergic inhibition of the melanotropes of the pars intermedia. Horses with PPID have increased plasma concentrations of pars intermedia pro-opiomelanocortin-derived peptides that decrease in response to dopamine or dopamine agonist administration. Dopamine and dopamine metabolite concentrations are decreased in the pars intermedia of affected horses compared to age-matched control horses. Horses with disease that are treated with the dopamine agonist pergolide show improvement in clinical signs and normalisation of diagnostic test results. In the present study, immunohistochemical evaluation of pituitary and hypothalamic tissue demonstrated reduced tyrosine hydroxylase immunoreactivity in affected horses compared to age-matched and young controls, supporting the role of dopaminergic neurodegeneration in PPID. In addition, immunohistochemical evaluation revealed an increase in the oxidative stress marker, 3-nitrotyrosine and in nerve terminal protein, alpha-synuclein that colocalised in the pars intermedia of horses with disease. These findings suggest a role for nitration of overexpressed alpha-synuclein in the pathogenesis of neurodegeneration in PPID. Topics: alpha-Synuclein; Animals; Blotting, Western; Chronic Disease; Dopamine; Horse Diseases; Horses; Immunohistochemistry; Nerve Degeneration; Nerve Tissue Proteins; Nitrogen; Oxidative Stress; Pituitary ACTH Hypersecretion; Pituitary Gland; Synucleins; Tyrosine; Tyrosine 3-Monooxygenase | 2005 |
Enhanced susceptibility of S-100B transgenic mice to neuroinflammation and neuronal dysfunction induced by intracerebroventricular infusion of human beta-amyloid.
S-100B is an astrocyte-derived protein that is increased in focal areas of the brain most severely affected by neuropathological changes in Alzheimer's disease (AD). Cell-based and clinical studies have implicated S-100B in progression of a pathologic, glial-mediated pro-inflammatory state in the CNS. However, the relationship between S-100B levels and susceptibility to AD-relevant neuroinflammation and neuronal dysfunction in vivo has not been determined. To test the hypothesis that overexpression of S-100B increases vulnerability to beta-amyloid (Abeta)-induced damage, we used S-100B-overexpressing transgenic (Tg) and S-100B knockout (KO) mice in a mouse model that involves intracerebroventricular infusion of human oligomeric Abeta1-42. This model mimics many features of AD, including robust neuroinflammation, Abeta plaques, synaptic damage and neuronal loss in the hippocampus. S-100B Tg, KO, and wild-type (WT) mice were infused with Abeta for 28 days, sacrificed at 60 days, and hippocampal endpoints analyzed. We found that Tg mice showed increased vulnerability to Abeta-induced neuropathology relative to either WT or KO mice. Specifically, Tg mice exhibited enhanced glial activation and neuroinflammation, increased nitrotyrosine staining (a marker of glial-induced neuronal damage), and more pronounced loss of synaptic markers. Interestingly, Tg mice showed no significant differences in Abeta plaque burden compared with WT or KO mice, suggesting that, as in the human situation, the severity of neuronal dysfunction did not correlate with amyloid deposition. Our data are consistent with a model in which S-100B overexpression in AD enhances glial activation and leads to an augmented neuroinflammatory process that increases the severity of neuropathologic sequelae. Topics: Amyloid beta-Peptides; Animals; Biomarkers; Brain; Disease Models, Animal; Encephalitis; Genetic Predisposition to Disease; Gliosis; Humans; Injections, Intraventricular; Mice; Mice, Knockout; Mice, Transgenic; Nerve Degeneration; Nerve Growth Factors; Neurons; Peptide Fragments; Plaque, Amyloid; Presynaptic Terminals; S100 Calcium Binding Protein beta Subunit; S100 Proteins; Tyrosine | 2005 |
Role of oxidative stress in paraquat-induced dopaminergic cell degeneration.
Systemic treatment of mice with the herbicide paraquat causes the selective loss of nigrostriatal dopaminergic neurons, reproducing the primary neurodegenerative feature of Parkinson's disease. To elucidate the role of oxidative damage in paraquat neurotoxicity, the time-course of neurodegeneration was correlated to changes in 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation marker. When mice were exposed to three weekly injections of paraquat, no nigral dopaminergic cell loss was observed after the first administration, whereas a significant reduction of neurons followed the second exposure. Changes in the number of nigral 4-HNE-positive neurons suggest a relationship between lipid peroxidation and neuronal death, since a dramatic increase in this number coincided with the onset and development of neurodegeneration after the second toxicant injection. Interestingly, the third paraquat administration did not cause any increase in 4-HNE-immunoreactive cells, nor did it produce any additional dopaminergic cell loss. Further evidence of paraquat-induced oxidative injury derives from the observation of nitrotyrosine immunoreactivity in the substantia nigra of paraquat-treated animals and from experiments with ferritin transgenic mice. These mice, which are characterized by a decreased susceptibility to oxidative stress, were completely resistant to the increase in 4-HNE-positive neurons and the cell death caused by paraquat. Thus, paraquat exposure yields a model that emphasizes the susceptibility of dopaminergic neurons to oxidative damage. Topics: Aldehydes; Analysis of Variance; Animals; Cell Count; Dopamine; Drug Administration Schedule; Ferritins; Herbicides; Humans; Immunohistochemistry; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nerve Degeneration; Oxidative Stress; Paraquat; Promoter Regions, Genetic; Time Factors; Tyrosine; Tyrosine 3-Monooxygenase | 2005 |
Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein.
Alpha-synuclein (alpha-syn) is a major protein component of the neuropathological hallmarks of Parkinson's disease and related neurodegenerative disorders termed synucleinopathies. Neither the mechanism of alpha-syn fibrillization nor the degradative process for alpha-syn has been elucidated. Previously, we showed that wild-type, mutated, and fibrillar alpha-syn proteins are substrates of calpain I in vitro. In this study, we demonstrate that calpain-mediated cleavage near and within the middle region of soluble alpha-syn with/without tyrosine nitration and oxidation generates fragments that are unable to self-fibrillize. More importantly, these fragments prevent full-length alpha-syn from fibrillizing. Calpain-mediated cleavage of alpha-syn fibrils composed of wild-type or nitrated alpha-syn generate C-terminally truncated fragments that retain their fibrillar structure and induce soluble full-length alpha-syn to co-assemble. Therefore, calpain-cleaved soluble alpha-syn inhibits fibrillization, whereas calpain-cleaved fibrillar alpha-syn promotes further co-assembly. These results provide insight into possible disease mechanisms underlying synucleinopathies since the formation of alpha-syn fibrils could be causally linked to the onset/progression of these disorders. Topics: alpha-Synuclein; Calpain; Chymotrypsin; Humans; Hydrolysis; Microscopy, Immunoelectron; Nerve Degeneration; Nerve Tissue Proteins; Nitrates; Parkinson Disease; Peptide Fragments; Peroxynitrous Acid; Recombinant Proteins; Solubility; Synucleins; Tyrosine | 2005 |
Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults.
Mutations in parkin are involved in some cases of autosomal recessive juvenile parkinsonism (AR-JP), but it is not known how they result in nigral cell death. We examined the effect of parkin overexpression on the response of cells to various insults. Wild-type and AR-JP-associated mutant parkins (Del3-5, T240R, and Q311X) were overexpressed in NT-2 and SK-N-MC cells. Overexpressed wild-type parkin delayed cell death induced by serum withdrawal, H(2)O(2), 1-methyl-4-phenylpyridinium (MPP(+)), or 4-hydroxy-2-trans-nonenal (HNE) but did not delay cell death caused by the proteasome inhibitor lactacystin. Increases in damage to proteins (protein carbonyls and 3-nitrotyrosine) were attenuated by wild-type parkin after serum withdrawal or exposure to H(2)O(2), MPP(+), or HNE but not after exposure to lactacystin. The mutant parkins (of all types) markedly accelerated cell death in response to all the insults, accompanied by increased levels of 8-hydroxyguanine, protein carbonyls, lipid peroxidation, and 3-nitrotyrosine and decreased levels of GSH. The viability loss induced by all the insults showed apoptotic features. The presence of parkin mutations in substantia nigra in Parkinson's disease may increase neuronal vulnerability to a range of toxic insults. Topics: 1-Methyl-4-phenylpyridinium; Acetylcysteine; Aldehydes; Apoptosis; Cell Death; Cell Line, Tumor; Drug Resistance; Enzyme Inhibitors; Genetic Predisposition to Disease; Glutamic Acid; Guanine; Humans; Hydrogen Peroxide; Mutation; Nerve Degeneration; Neurons; Neurotoxins; Oxidative Stress; Parkinsonian Disorders; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Substantia Nigra; Tyrosine; Ubiquitin-Protein Ligases | 2005 |
Reduced neuronal injury after treatment with NG-nitro-L-arginine methyl ester (L-NAME) or 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) following experimental brain contusion.
Nitric oxide (NO) and oxygen free radicals are implicated in the pathophysiology of traumatic brain injury (TBI). Peroxynitrite formation from NO and superoxide contributes to secondary neuronal injury but the neuroprotective effects of nitric oxide synthase (NOS)-inhibitors have been contradictory. This study was undertaken to examine whether PTtic administration of the (NOS)-inhibitor N-nitro-l-arginine methyl ester (L-NAME), and a combination of L-NAME and the nitrone radical scavenger 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN) favorable affects neuronal injury in a model of TBI.. A weight-drop model of TBI was used. The animals received L-NAME, S-PBN or a combination of the drugs 15 minutes prothrombin time (PT) and sacrificed after 24 hours or six days. NOS activity was measured by the conversion of L-[U-C]arginine to L-[U-C]citrulline. Peroxynitrite formation, cellular apoptosis, neuronal degeneration and survival were assessed by nitrotyrosine-, TUNEL-, Fluoro-Jade- and NeuN-stainings.. eNOS and nNOS activity was significantly reduced in animals that received L-NAME alone or the combination with S-PBN. iNOS activity or iNOS immunoreactivity was not affected. All treatments significantly reduced neuronal degeneration and nitrotyrosine immunoreactivity at 24 hours and increased neuronal survival at six days PT. No differences were detected between L-NAME and L-NAME + S-PBN groups.. NO from NOS contributes to secondary neuronal injury in this TBI-model. PTtic treatment does not inhibit early beneficial NO-related effects. L-NAME and S-PBN limit peroxynitrite formation, promoting neuronal survival. The combination of L-NAME and S-PBN was neuroprotective; surprisingly no additive effects were found on nitrotyrosine formation, apoptosis or neuronal survival. Topics: Animals; Apoptosis; Benzenesulfonates; Brain; Brain Injuries; Cell Survival; Drug Combinations; Enzyme Inhibitors; Fluoresceins; Fluorescent Dyes; Immunohistochemistry; In Situ Nick-End Labeling; Male; Nerve Degeneration; Neurons; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Organic Chemicals; Rats; Rats, Sprague-Dawley; Tyrosine | 2005 |
Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury.
The role of reactive oxygen-induced oxidative damage to lipids (i.e., lipid peroxidation, LP) and proteins has been strongly supported in previous work. Most notably, a number of free radical scavengers and lipid antioxidants have been demonstrated to be neuroprotective in traumatic brain injury (TBI) models. However, the specific sources of reactive oxygen species (ROS), the time course of oxidative damage and its relationship to post-traumatic neurodegeneration in the injured brain have been incompletely defined. The present study was directed at an investigation of the role of the ROS, peroxynitrite (PON), in the acute pathophysiology of TBI and its temporal relationship to neurodegeneration in the context of the mouse model of diffuse head injury model. Male CF-1 mice were subjected to a moderately severe head injury and assessed at 1-, 3-, 6-, 12-, 24-, 48-, 72, 96- and 120-h post-injury for neurodegeneration using quantitative image analysis of silver staining and semi-quantitative analysis of PON-mediated oxidative damage to proteins (3-nitrotyrosine, 3-NT) and lipids (4-hydroxynonenal, 4-HNE). Significant evidence of silver staining was not apparent until 24-h post-injury, with peak staining seen between 72- and 120-h. This time-course of neurodegeneration was preceded by intense immunostaining for 3-NT and 4-HNE, which occurred within the first hour post-injury. The time course and staining pattern for 3-NT and 4-HNE were similar, with the highest staining intensity noted within the first 48-h in areas surrounding trauma-induced contusions. In the case of 3-NT, neuronal perikarya and processes and microvessels displayed staining. The temporal and spatial coincidence of protein nitration and LP damage suggests that PON is involved in both. However, lipid-peroxidative (4-HNE) immunoreactivity was broader and more diffuse than 3-NT, suggesting that other reactive oxygen mechanisms, such as iron-dependent LP, may also contribute to the more widespread 4-HNE immunoreactivity. This indicates that optimal pharmacological inhibition of post-traumatic oxidative damage in TBI may need to combine two functionalities: one to scavenge PON or PON-derived radicals, and the second to inhibit LP caused by multiple ROS species. Topics: Aldehydes; Animals; Brain; Brain Injuries; Disease Models, Animal; Image Processing, Computer-Assisted; Immunohistochemistry; Lipid Peroxidation; Male; Mice; Nerve Degeneration; Peroxynitrous Acid; Proteins; Time Factors; Tyrosine | 2004 |
Expression of nitric oxide system in clinically evaluated cases of Alzheimer's disease.
The expression of neuronal nitric oxide (nNOS) and inducible nitric oxide (iNOS) as isoforms of the nitric oxide synthase (NOS) as well as nitrotyrosine as an end product of protein nitration was analyzed in sections of temporal cortex taken from postmortem brains of patients with Alzheimer's disease (AD). The patients were evaluated by the Clinical Dementia Rating scale (CDR0-CDR3) and studied in the Memory and Aging Project (MAP) of the Washington University Alzheimer Disease Research Center (ADCR). With the use of immunocytochemical procedures, neurons immunoreactive to nNOS were found to show large and small multipolar and pyramidal morphologies over the entire chronic AD evolution. The iNOS and nitrotyrosine immunoreactivities were also found in pyramidal-like cortical neurons and glial cells. Here, we speculate on the interaction among all specific neurodegenerative changes in AD and nitric oxide as an additional contribution to neuronal death in AD. Topics: Aged; Aged, 80 and over; Alzheimer Disease; Cell Death; Humans; Immunohistochemistry; Middle Aged; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Pyramidal Cells; Temporal Lobe; Tyrosine | 2004 |
Role of inducible nitric oxide synthase in N-methyl-d-aspartic acid-induced strio-nigral degeneration.
N-Methyl-d-aspartate (NMDA)-induced striatal excitotoxicity is mediated by nitric oxide (NO) but the role of inflammatory mechanisms and inducible nitric oxide synthase (iNOS) induction is not clear. Unilateral intrastriatal administration of NMDA to rats resulted in the loss of intrinsic striatal neurones and the degeneration of NADPH-diaphorase positive interneurones within 24 h. NMDA administration caused activation of glial fibrillary acidic protein positive astroglial cells and MAC-1 ir microglia. Marked iNOS immunoreactivity was expressed within both astroglial and microglial cells and there was marked cellular labelling for 3-nitrotyrosine (3-NT). One month following the NMDA lesion, administration of (+)-amphetamine (AMPH) produced a circling response in rats. Pre-treatment of rats with the iNOS inhibitor aminoguanidine (AG) decreased the extent of NMDA-induced striatal cell loss at 24 h and reduced 3-NT expression but was without effect on glial cell activation. AG pre-treatment also prevented the onset of rotation to AMPH at 30 days following NMDA lesioning. NMDA administration unexpectedly caused a loss of tyrosine hydroxylase immunoreactive (TH-ir) fibres in the striatum at 24 h and at 30 days the number of TH-ir cells were decreased in the substantia nigra. The loss of nigral cells was prevented by AG pre-treatment. This study demonstrates a role for iNOS induction in NO-mediated NMDA excitotoxicity to rat striatum and suggests that inflammatory mechanisms play a key role in this process. Topics: Animals; Functional Laterality; Guanidines; Immunohistochemistry; Inflammation; Interneurons; Male; Motor Activity; N-Methylaspartate; NADPH Dehydrogenase; Neostriatum; Nerve Degeneration; Neuroglia; Neurons; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Rats; Rats, Wistar; Tyrosine | 2004 |
A novel model for rapid induction of apoptosis in spiral ganglions of mice.
The survival of the spiral ganglion (SG) is a critical issue in preservation of hearing. Research on topics related to this issue requires a mouse experimental model because such a model has advantages including use of genetic information and knockout or "knockin" mice. Thus, the aim of the study was to establish a mouse model for induction of apoptosis of SG neurons with a definite time course.. Laboratory study using experimental animals.. C57BL/6 mice were used as experimental animals and were subjected to direct application of cisplatin into the inner ear. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay and immunostaining for Neurofilament 200-kD (NF) and peripherin were used for analysis of SG degeneration. In addition, generation of peroxynitrite in affected spiral ganglions was examined by immunostaining for nitrotyrosine. Cellular location of activated caspase-9 and cytochrome-c in dying SG neurons were examined for analysis of cell death pathway.. The TUNEL assay and immunohistochemical analysis for NF and peripherin indicated that type I neurons in spiral ganglions were deleted through the apoptotic pathway over time. Spiral ganglion neurons treated with cisplatin exhibited expression of nitrotyrosine, indicating induction of peroxynitrite by cisplatin. In dying SG neurons, expression of activated caspase-9 and translocation of cytochrome-c from mitochondria to cytoplasm were observed, indicating the mitochondrial pathway of apoptosis.. The predictable fashion of induction of apoptosis in SG neurons over a well-defined time course in the model in the study will aid studies of the molecular mechanism of cell death and elucidation of a strategy for prevention of SG degeneration. Topics: Animals; Apoptosis; Cell Death; Cisplatin; Disease Models, Animal; In Situ Nick-End Labeling; Intermediate Filament Proteins; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Peripherins; Peroxynitrous Acid; Spiral Ganglion; Tyrosine | 2003 |
Astrocyte-targeted expression of interleukin-6 protects the central nervous system during neuroglial degeneration induced by 6-aminonicotinamide.
6-aminonicotinamide (6-AN) is a niacin antagonist, which leads to degeneration of gray matter astrocytes mainly in the brainstem. We have examined the role of interleukin-6 (IL-6) in this degenerative process by using transgenic mice with astrocyte-targeted IL-6 expression (GFAP-IL6 mice). This study demonstrates that transgenic IL-6 expression significantly increases the 6-AN-induced inflammatory response of reactive astrocytes, microglia/macrophages, and lymphocytes in the brainstem. Also, IL-6 induced significant increases in proinflammatory cytokines IL-1, IL-12, and tumor necrosis factor-alpha as well as growth factors basic fibroblast growth factor (bFGF), transforming growth factor-beta, neurotrophin-3, angiopoietin, vascular endothelial growth factor, and the receptor for bFGF. In accordance, angiogenesis was increased in GFAP-IL6 mice relative to controls after 6-AN. Moreover, oxidative stress and apoptotic cell death were significantly reduced by transgenic IL-6 expression. IL-6 is also a major inducer in the CNS of metallothionein I and II (MT-I+II), which were significantly increased in the GFAP-IL6 mice. MT-I+II are antioxidants and neuroregenerative factors in the CNS, so increased MT-I+II levels in GFAP-IL6 mice could contribute to the reduction of oxidative stress and cell death in these mice. Topics: 6-Aminonicotinamide; Angiogenesis Inducing Agents; Animals; Apoptosis; Astrocytes; Brain Stem; Cell Count; Central Nervous System; Cytokines; Disease Models, Animal; Gene Targeting; Glial Fibrillary Acidic Protein; Growth Substances; Immunohistochemistry; In Situ Nick-End Labeling; Interleukin-6; Lymphocytes; Macrophages; Malondialdehyde; Metallothionein; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microglia; Nerve Degeneration; Oxidative Stress; Staining and Labeling; Stem Cells; Teratogens; Tyrosine | 2003 |
NMDA receptor regulation of nNOS phosphorylation and induction of neuron death.
Stimulation of NMDA receptors activates neuronal nitric oxide synthase (nNOS) and the production of nitric oxide (NO). Dephosphorylation of nNOS increases nNOS enzymatic activity. We have examined the regulation of nNOS phosphorylation in rat cortical neurons following NMDA receptor activation. We show that nNOS is constitutively phosphorylated and that NMDA receptor activation decreases the level of nNOS phosphorylation by a mechanism that is blocked specifically by NMDA receptor antagonists and inhibitors of the Ca2+-regulated phosphatases calcineurin and PP1/PP2A. Using quantitative digital microscopy, we show that NMDA receptor activation induces the accumulation of nitrotyrosine, a measure of nNOS activity, and TdT-mediated fluorescein-dUTP nick end labeling (TUNEL) positivity, a measure of cell death. A calcineurin inhibitor blocked the increase in both TUNEL and nitrotyrosine positivity. Notably, TUNEL was increased in those neurons that were most strongly positive for nitrotyrosine. We conclude that NMDA receptor activation induces death of neurons by a cell autonomous pathway involving nNOS dephosphorylation by a calcineurin-dependent mechanism. Topics: Animals; Apoptosis; Calcineurin; Calcineurin Inhibitors; Cells, Cultured; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; In Situ Nick-End Labeling; Nerve Degeneration; Neurodegenerative Diseases; Neurons; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Phosphoprotein Phosphatases; Phosphorylation; Rats; Receptors, N-Methyl-D-Aspartate; Tyrosine | 2003 |
Involvement of enhanced sensitivity of N-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity.
The developing cortical neurons have been well documented to be extremely vulnerable to the toxic effect of methylmercury (MeHg). In the present study, a possible involvement of N-methyl-D-aspartate (NMDA) receptors in MeHg neurotoxicity was examined because the sensitivity of cortical neurons to NMDA neurotoxicity has a similar developmental profile. Rats on postnatal day 2 (P2), P16, and P60 were orally administered MeHg (10 mg/kg) for 7 consecutive days. The most severe neuronal damage was observed in the occipital cortex of P16 rats. When MK-801 (0.1 mg/kg), a non-competitive antagonist of NMDA, was administered intraperitoneally with MeHg, MeHg-induced neurodegeneration was markedly ameliorated. Furthermore, there was a marked accumulation of nitrotyrosine, a reaction product of peroxynitrite and L-tyrosine, after chronic treatment of MeHg in the occipital cortex of P16 rats. The accumulation of nitrotyrosine was also significantly suppressed by MK-801. In the present electrophysiological study, the amplitude of synaptic responses mediated by NMDA receptors recorded in cortical neurons of P16 rats was significantly larger than those from P2 and P60 rats. These observations strongly suggest that a generation of peroxynitrite through activation of NMDA receptors is a major causal factor for MeHg neurotoxicity in the developing cortical neurons. Furthermore, enhanced sensitivity of NMDA receptors may make the cortical neurons of P16 rats most susceptible to MeHg neurotoxicity. Topics: Age Factors; Animals; Animals, Newborn; Antigens, CD; Antigens, Neoplasm; Antigens, Surface; Avian Proteins; Basigin; Blood Proteins; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Membrane Glycoproteins; Mercury Poisoning, Nervous System; Methylmercury Compounds; Nerve Degeneration; Neurons; Nitrates; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Tyrosine | 2001 |
Fibrillar beta-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer's disease.
Beta-amyloid is one of the most significant features of Alzheimer's disease, and has been considered to play a pivotal role in neurodegeneration through an unknown mechanism. However, it has been noted that beta-amyloid accumulation is associated with markers of oxidative stress including protein oxidation (Smith et al., 1997), lipid peroxidation (Mark et al., 1997; Sayre et al., 1997), advanced glycation end products (Smith et al., 1994), and oxidation of nucleic acids (Nunomura et al., 1999). Furthermore, studies from cultured cells have shown that beta-amyloid leads to an increase in hydrogen peroxide levels (Behl et al., 1994), and the production of reactive oxygen intermediates (Harris et al., 1995). Taken together, this evidence supports the idea that beta-amyloid plays a key role in oxidative stress-evoked neuropathology. In this study, we examined the induction of oxidative stress in response to amyloid load in a mouse model of Alzheimer's disease. The mice carrying mutant amyloid precursor protein and presenilins-1 (Goate et al., 1991; Hardy, 1997), develops beta-amyloid deposits at 10-12 weeks of age and show several features of the human disease (Holcomb et al., 1998; Matsuoka et al., 2001; McGowan et al., 1999; Takeuchi et al., 2000; Wong et al., 1999). Both 3-nitrotyrosine and 4-hydroxy-2-nonenal (protein and lipid oxidative stress markers, respectively) associate strongly with fibrillar beta-amyloid, but not with diffuse (thioflavine S negative) beta-amyloid, and the levels increase in relation to the age-associated increase in fibrillar amyloid load.From these data we suggest that fibrillar beta-amyloid is associated with oxidative damage which may influence disease progression in the Alzheimer's disease brain. Topics: Aging; Aldehydes; Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzothiazoles; Brain; Disease Models, Animal; Immunohistochemistry; Mice; Mice, Neurologic Mutants; Mice, Transgenic; Nerve Degeneration; Neurofibrillary Tangles; Oxidative Stress; Thiazoles; Tyrosine | 2001 |
Expressions of nitrotyrosine and TUNEL immunoreactivities in cultured rat spinal cord neurons after exposure to glutamate, nitric oxide, or peroxynitrite.
Although excitotoxic and oxidative stress play important roles in spinal neuron death, the exact mechanism is not fully understood. We examined cell damage of primary culture of 11-day-old rat spinal cord by addition of glutamate, nitric oxide (NO) or peroxynitrite (PN) with detection of nitrotyrosine (NT) or terminal deoxynucleotidyl transferase-mediated dUTP-biotin in situ nick end labeling (TUNEL). With addition of glutamate, NOC18 (a slow NO releaser) or PN, immunoreactivity for NT became stronger in the cytoplasm of large motor neurons in the ventral horn at 6 to 48 hr and positive in the axons of the ventral horn at 24 to 48 hr. TUNEL positive nuclei were found in spinal large motor neurons from 24 hr, and the positive cell number greatly increased at 48 hr in contrast to the vehicle. Pretreatment of cultures with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptor antagonist, NO-suppressing agent, and antioxidant protected the immunoreactivity for NT or TUNEL. The present results suggest that both excitotoxic and oxidative stress play an important role in the upregulation of NT nitration and the apoptotic pathway in cultured rat spinal neurons. Topics: Animals; Antioxidants; Apoptosis; Cells, Cultured; Central Nervous System Diseases; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Free Radicals; Glutamic Acid; Immunohistochemistry; In Situ Nick-End Labeling; Interneurons; Motor Neurons; Nerve Degeneration; Neurons; Neurotoxins; Nitrates; Nitric Oxide Donors; Organ Culture Techniques; Oxidative Stress; Rats; Rats, Sprague-Dawley; Spinal Cord; Tyrosine | 2001 |
Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis.
Metallothionein-I+II (MT-I+II) are antioxidant, neuroprotective proteins, and in this report we have examined their roles during experimental autoimmune encephalomyelitis (EAE) by comparing MT-I+II-knock-out (MTKO) and wild-type mice. We herewith show that EAE susceptibility is higher in MTKO mice relatively to wild-type mice, and that the inflammatory responses elicited by EAE in the central nervous system (CNS) are significantly altered by MT-I+II deficiency. Thus, during EAE the MTKO mice showed increased macrophage and T-lymphocytes infiltration in the CNS, while their reactive astrogliosis was significantly decreased. In addition, the expression of the proinflammatory cytokines interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha elicited by EAE was further increased in the MTKO mice, and oxidative stress and apoptosis were also significantly increased in MTKO mice compared to normal mice. The present results strongly suggest that MT-I+II are major factors involved in the inflammatory response of the CNS during EAE and that they play a neuroprotective role in this scenario. Topics: Animals; Apoptosis; Encephalomyelitis, Autoimmune, Experimental; Gliosis; In Situ Nick-End Labeling; Interleukin-1; Interleukin-6; Macrophages; Malondialdehyde; Metallothionein; Mice; Mice, Inbred Strains; Mice, Knockout; Microglia; Nerve Degeneration; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oxidative Stress; T-Lymphocytes; Tumor Necrosis Factor-alpha; Tyrosine | 2001 |
Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hyperglycemic focal cerebral ischemia.
We have characterized the temporal changes in iNOS, MnSOD and nitrotyrosine immune reactivity in a rat model of permanent middle cerebral artery occlusion under acute hyperglycemic or normoglycemic conditions followed by either 3- or 24-h recovery. We found that the macroscopic labeling pattern for all three antibodies colocalized with the ischemic core and penumbra which was determined by cresyl violet histological evaluation in adjacent sections. Hyperglycemia induced prior to ischemia resulted in earlier infarction which correlated with increased immunoreactivity for iNOS, MnSOD and nitrotyrosine. In the penumbral region of the frontal cortex, labeling of specific cell structures was largely limited to cortical neurons near the corpus callosum and was apparent earlier in the hyperglycemic rats. Increased polymorphonuclear leukocyte adhesion in blood vessels was observed at 24 h in the hyperglycemic group. At both of the recovery times studied, we observed only minor vascular staining for nitrotyrosine and none for iNOS. Our results are consistent with hyperglycemia resulting in an early and concomitant increase in both superoxide and nitric oxide production which can lead to peroxynitrite formation that then nitrates tyrosine residues. It would appear that hyperglycemic ischemia contributes to the early induction of key enzymes involved in nitric oxide bioavailability. Topics: Animals; Blood Vessels; Brain Ischemia; Cerebral Cortex; Cerebrovascular Circulation; Disease Models, Animal; Hyperglycemia; Immunohistochemistry; Infarction, Middle Cerebral Artery; Male; Nerve Degeneration; Neuroglia; Neurons; Nitric Oxide; Nitric Oxide Synthase; Oxygen; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Tyrosine | 2001 |
Hyperalgesia due to nerve injury-role of peroxynitrite.
We carried out a partial ligation of the sciatic nerve in rats to induce nerve injury and neuropathic hyperalgesia. We showed that nitrotyrosine, a marker of peroxynitrite activity, was formed after partial nerve injury. Double-labelling immunohistochemistry showed that nitrotyrosine-immunoreactive cells were mainly macrophages and Schwann cells. Daily treatment with uric acid, a scavenger of peroxynitrite, decreased nitrotyrosine formation in the injured sciatic nerve, and produced concomitant alleviation of thermal hyperalgesia and Wallerian degeneration. These results provide the first evidence that peroxynitrite is formed after partial nerve injury, and contributes to the initiation of thermal hyperalgesia and Wallerian degeneration. We hypothesize that uric acid alleviates hyperalgesia and Wallerian degeneration by inhibiting oxidative damage caused by peroxynitrite and possibly also by decreasing the production of other inflammatory mediators such as prostaglandins. Topics: Animals; Hyperalgesia; Hyperthermia, Induced; Immunohistochemistry; Male; Nerve Compression Syndromes; Nerve Crush; Nerve Degeneration; Neuralgia; Nitrates; Peripheral Nerve Injuries; Peripheral Nerves; Rats; Rats, Wistar; Tyrosine; Uric Acid | 2000 |
Artefacts in HPLC detection of 3-nitrotyrosine in human brain tissue.
An HPLC method was used for quantification of 3-nitrotyrosine (3-NT) in human postmortem brain tissue. A peak with similar retention time to 3-NT was detected in brain tissue from patients with Parkinson's disease, Huntington's chorea, multiple system atrophy, and Alzheimer's disease but not in control tissue. The peak was lost on reduction with dithionite, a criterion often used to identify 3-NT. Tissue from the same neurodegenerative diseases was analysed by HPLC using a photodiode array detector in series with an amperometric electrochemical detector, but the peak was found not to be 3-NT. The absorbance spectrum, fragmentation pattern on mass spectroscopy, and electrochemical profile of this peak do not match authentic 3-NT. A search of the mass spectroscopy databases failed to reveal its identity. The presence of this closely eluting, dithionite-reducible peak could confound analysis of human tissues for 3-NT. In vitro experiments showed that high concentrations of peroxynitrite were needed to achieve detectable levels of 3-NT in human brain tissue. Topics: Artifacts; Brain; Cadaver; Chromatography, High Pressure Liquid; Humans; Nerve Degeneration; Nervous System Diseases; Reference Values; Tyrosine | 1998 |
Induction of microglial reaction and expression of nitric oxide synthase I in the nucleus dorsalis and red nucleus following lower thoracic spinal cord hemisection.
In the present study, immunohistochemical stainings for OX-6, OX-42, nitric oxide synthase I and II as well as nitrotyrosine were used to investigate possible correlation among microglial reactivity, nitric oxide synthase upregulation, peroxynitrite involvement and neuronal death in the nucleus dorsalis and red nucleus following lower thoracic spinal cord hemisection. Significant neuronal loss was found in the ipsilateral nucleus dorsalis and contralateral red nucleus after cord hemisection. A distinctive microglial reaction for OX-42 could be observed from one to four weeks post axotomy in the ipsilateral nucleus dorsalis; by contrast, it was observed on both sides of the red nucleus from one to three weeks following cord hemisection. The activated microglial cells showed some degree of hypertrophy. From the microglial immunoreactivity as well as their appearance, it was speculated that microglial activation might be beneficial or protective to the axotomized neurons. In normal and sham-operated rats, neurons of the nucleus dorsalis were not nitric oxide synthase I reactive. Three weeks after cord hemisection, neurons in the ipsilateral nucleus dorsalis below the lesion showed strong immunoreactivity. Neurons in the red nucleus that normally displayed weak nitric oxide synthase I immunoreactivity showed an increase on both sides of the nucleus. These results suggested that nitric oxide synthase I expression in the nucleus dorsalis following axotomy was synthesized de novo and might act as a neurotoxic agent. However, the bilateral increase in expression of nitric oxide synthase I in the red nucleus after lower thoracic cord hemisection was due to up-regulation of the constitutive enzyme and might have some neuroprotective function. Our results also suggested that peroxynitrite played no or little role in the neurodegeneration in the nucleus dorsalis and red nucleus following axotomy. Topics: Animals; Antibodies, Monoclonal; Antigens, CD; Antigens, Neoplasm; Antigens, Surface; Avian Proteins; Basigin; Blood Proteins; Functional Laterality; Gene Expression Regulation, Enzymologic; Immunohistochemistry; Male; Membrane Glycoproteins; Microglia; Nerve Degeneration; Neurons; Nitric Oxide Synthase; Rats; Rats, Wistar; Red Nucleus; Spinal Cord; Spinal Cord Injuries; Tegmentum Mesencephali; Tyrosine | 1998 |