3-nitrotyrosine has been researched along with Mitochondrial-Diseases* in 10 studies
10 other study(ies) available for 3-nitrotyrosine and Mitochondrial-Diseases
Article | Year |
---|---|
Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease.
Numerous factors contribute to the death of substantia nigra (SN) dopamine (DA) neurons in Parkinson's disease (PD). Compelling evidence implicates mitochondrial deficiency, oxidative stress, and inflammation as important pathogenic factors in PD. Chronic exposure of rats to rotenone causes a PD-like syndrome, in part by causing oxidative damage and inflammation in substantia nigra. Pomegranate juice (PJ) has the greatest composite antioxidant potency index among beverages, and it has been demonstrated to have protective effects in a transgenic model of Alzheimer's disease. The present study was designed to examine the potential neuroprotective effects of PJ in the rotenone model of PD. Oral administration of PJ did not mitigate or prevent experimental PD but instead increased nigrostriatal terminal depletion, DA neuron loss, the inflammatory response, and caspase activation, thereby heightening neurodegeneration. The mechanisms underlying this effect are uncertain, but the finding that PJ per se enhanced nitrotyrosine, inducible nitric oxide synthase, and activated caspase-3 expression in nigral DA neurons is consistent with its potential pro-oxidant activity. Topics: Animals; Caspase 3; Disease Models, Animal; Dopaminergic Neurons; Inflammation; Lythraceae; Male; Mitochondrial Diseases; Nitric Oxide Synthase Type II; Oxidative Stress; Parkinson Disease; Rats; Rats, Inbred Lew; Rotenone; Substantia Nigra; Tyrosine | 2014 |
Redox metabolism abnormalities in autistic children associated with mitochondrial disease.
Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly higher 3CT levels than control subjects, suggesting that chronic inflammation was present in both groups of children with ASD. Interestingly, 3NT was found to correlate positively with several measures of cognitive function, development and behavior for the ASD/MD group, but not the ASD/NoMD group, such that higher 3NT concentrations were associated with more favourable adaptive behaviour, language and ASD-related behavior. To determine whether difference in receiving medications and/or supplements Topics: Age Factors; Biomarkers; Child; Child Development Disorders, Pervasive; Female; Glutathione; Humans; Language Development; Male; Mitochondrial Diseases; Neuropsychological Tests; Oxidation-Reduction; Oxidative Stress; Tyrosine | 2013 |
Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement.
Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress. Topics: Adolescent; Adult; Aged; Base Sequence; Brachial Artery; Case-Control Studies; Deafness; Diabetes Mellitus, Type 2; Endothelium, Vascular; Female; Femoral Artery; Humans; Kearns-Sayre Syndrome; Male; MELAS Syndrome; MERRF Syndrome; Middle Aged; Mitochondrial Diseases; Muscle, Skeletal; Muscle, Smooth, Vascular; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Point Mutation; Sequence Deletion; Tyrosine; Vasodilation | 2011 |
Increased 3-nitrotyrosine levels in mitochondrial membranes and impaired respiratory chain activity in brain regions of adult female rats submitted to daily vitamin A supplementation for 2 months.
Vitamin A supplementation among women is a common habit worldwide in an attempt to slow aging progression due to the antioxidant potential attributed to retinoids. Nonetheless, vitamin A elicits a myriad of side effects that result from either therapeutic or inadvertent intake at varying doses for different periods. The mechanism behind such effects remains to be elucidated. In this regard, we performed the present work aiming to investigate the effects of vitamin A supplementation at 100, 200, or 500IU/kgday(-1) for 2 months on female rat brain, analyzing tissue lipid peroxidation levels, antioxidant enzyme activities (both Cu/Zn-superoxide dismutase - SOD - and Mn-SOD); glutathione S-transferase (GST) and monoamine oxidase (MAO) enzyme activity; mitochondrial respiratory chain activity and redox parameters in mitochondrial membranes, as well as quantifying α- and β-synucleins, β-amyloid peptide(1-40), immunoglobulin heavy-chain binding protein/78kDa glucose-regulated protein (BiP/GRP78), receptor for advanced glycation end products (RAGE), D2 receptor, and tumor necrosis factor-α (TNF-α) contents in rat frontal cortex, hippocampus, striatum, and cerebellum. We observed increased lipid peroxidation marker levels, altered Cu/Zn-SOD and Mn-SOD enzyme activities, mitochondrial nitrosative stress, and impaired respiratory chain activity in such brain regions. On the other hand, we did not find any change in MAO and GST enzyme activities, and on α- and β-synucleins, β-amyloid peptide(1-40), GRP78/BiP, RAGE, D2 receptor, and TNF-α contents. Importantly, we did not observed any evidence regarding an antioxidant effect of such vitamin at low doses in this experimental model. The use of vitamin A as an antioxidant therapy among women needs to be reexamined. Topics: Amyloid beta-Peptides; Animals; Antioxidants; Brain Chemistry; Electron Transport; Enzyme-Linked Immunosorbent Assay; Estrous Cycle; Female; Glycation End Products, Advanced; Mitochondrial Diseases; Mitochondrial Membranes; Monoamine Oxidase; Oxidative Stress; Rats; Rats, Wistar; Receptors, Dopamine D2; Succinate Dehydrogenase; Superoxide Dismutase; Synucleins; Thiobarbituric Acid Reactive Substances; Tumor Necrosis Factor-alpha; Tyrosine; Ubiquinone; Vitamin A; Vitamins | 2011 |
Sustained deficiency of mitochondrial complex I activity during long periods of survival after seizures induced in immature rats by homocysteic acid.
Our previous work demonstrated the marked decrease of mitochondrial complex I activity in the cerebral cortex of immature rats during the acute phase of seizures induced by bilateral intracerebroventricular infusion of dl-homocysteic acid (600 nmol/side) and at short time following these seizures. The present study demonstrates that the marked decrease ( approximately 60%) of mitochondrial complex I activity persists during the long periods of survival, up to 5 weeks, following these seizures, i.e. periods corresponding to the development of spontaneous seizures (epileptogenesis) in this model of seizures. The decrease was selective for complex I and it was not associated with changes in the size of the assembled complex I or with changes in mitochondrial content of complex I. Inhibition of complex I was accompanied by a parallel, up to 5 weeks lasting significant increase (15-30%) of three independent mitochondrial markers of oxidative damage, 3-nitrotyrosine, 4-hydroxynonenal and protein carbonyls. This suggests that oxidative modification may be most likely responsible for the sustained deficiency of complex I activity although potential role of other factors cannot be excluded. Pronounced inhibition of complex I was not accompanied by impaired ATP production, apparently due to excess capacity of complex I documented by energy thresholds. The decrease of complex I activity was substantially reduced by treatment with selected free radical scavengers. It could also be attenuated by pretreatment with (S)-3,4-DCPG (an agonist for subtype 8 of group III metabotropic glutamate receptors) which had also a partial antiepileptogenic effect. It can be assumed that the persisting inhibition of complex I may lead to the enhanced production of reactive oxygen and/or nitrogen species, contributing not only to neuronal injury demonstrated in this model of seizures but also to epileptogenesis. Topics: Aldehydes; Animals; Animals, Newborn; Cerebral Cortex; Convulsants; Disease Models, Animal; Down-Regulation; Electron Transport Complex I; Energy Metabolism; Epilepsy; Excitatory Amino Acid Agonists; Free Radical Scavengers; Homocysteine; Male; Metabolic Networks and Pathways; Mitochondria; Mitochondrial Diseases; Oxidative Stress; Rats; Rats, Wistar; Seizures; Survival Rate; Time Factors; Tyrosine | 2010 |
Pulmonary ozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis.
More than 100 million people in the United States live in areas that exceed current ozone air quality standards. In addition to its known pulmonary effects, environmental ozone exposures have been associated with increased hospital admissions related to cardiovascular events, but to date, no studies have elucidated the potential molecular mechanisms that may account for exposure-related vascular impacts. Because of the known pulmonary redox and immune biology stemming from ozone exposure, we hypothesized that ozone inhalation would initiate oxidant stress, mitochondrial damage, and dysfunction within the vasculature. Accordingly, these factors were quantified in mice consequent to a cyclic, intermittent pattern of ozone or filtered air control exposure. Ozone significantly modulated vascular tone regulation and increased oxidant stress and mitochondrial DNA damage (mtDNA), which was accompanied by significantly decreased vascular endothelial nitric oxide synthase protein and indices of nitric oxide production. To examine influences on atherosclerotic lesion formation, apoE-/- mice were exposed as above, and aortic plaques were quantified. Exposure resulted in significantly increased atherogenesis compared with filtered air controls. Vascular mitochondrial damage was additionally quantified in ozone- and filtered air-exposed infant macaque monkeys. These studies revealed that ozone increased vascular mtDNA damage in nonhuman primates in a fashion consistent with known atherosclerotic lesion susceptibility in humans. Consequently, inhaled ozone, in the absence of other environmental toxicants, promotes increased vascular dysfunction, oxidative stress, mitochondrial damage, and atherogenesis. Topics: Air Pollutants; Animals; Aorta; Atherosclerosis; Blood Pressure; DNA Damage; DNA, Mitochondrial; Heart Rate; Lung Diseases; Macaca mulatta; Male; Mice; Mice, Inbred C57BL; Mitochondria; Mitochondrial Diseases; Nitrates; Nitric Oxide; Nitric Oxide Synthase Type III; Nitrites; Oxidants; Oxidative Stress; Ozone; Superoxide Dismutase; Tyrosine | 2009 |
Photoreceptor oxidative damage in sympathetic ophthalmia.
To determine photoreceptor oxidative stress and damage in sympathetic ophthalmia (SO).. Immunohistologic study.. Eight formalin-fixed and paraffin-embedded human globes with typical histologic features of SO and five age-matched globes without intraocular inflammation (controls) were retrieved from the Doheny Eye Institute ophthalmic pathology files. Deparaffinized sections of the globes were processed to localize tumor necrosis factor-alpha (TNF-alpha), tumor necrosis factor receptor-1 (TNF-R1), acrolein, inducible nitric oxide synthase (iNOS), and nitrotyrosine by immunolocalization method. The latter two were localized to photoreceptor mitochondria using anti-cytochrome C antibody. Apoptotic cells were detected by Terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (TUNEL) assay and were localized to the site of oxidative stress using antinitrotyrosine antibody.. Increased expression of TNF-alpha can be seen in the photoreceptor nuclear layer in all SO globes, whereas no such expression was observed in control globes. TNF-R1, iNOS, acrolein, and nitrotyrosine were immunolocalized to the inner segments of the photoreceptors in all SO globes, but only mild focal staining was observed in the control retinas. Both nitrotyrosine and iNOS immunolocalization revealed positive staining restricted primarily to mitochondria at the inner segments of the photoreceptors. Most of the TUNEL-positive cells were detected in the photoreceptors at the site of nitrotyrosine staining. In contrast, the age-matched control globes showed negative results.. In SO, photoreceptor mitochondrial oxidative stress occurs in the absence of leukocytic infiltration of the retina and may lead to photoreceptor apoptosis and subsequent vision loss. The oxidative stress seems to be mediated by iNOS and TNF-alpha. The current anti-inflammatory therapy combined with agents that could prevent oxidative stress may prevent photoreceptor damage in SO and may preserve vision. Topics: Acrolein; Adult; Aged; Apoptosis; Biomarkers; Cytochromes c; Fluorescent Antibody Technique, Indirect; Humans; In Situ Nick-End Labeling; Middle Aged; Mitochondrial Diseases; Nitric Oxide Synthase Type II; Ophthalmia, Sympathetic; Oxidative Stress; Photoreceptor Cells, Vertebrate; Receptors, Tumor Necrosis Factor, Type I; Tumor Necrosis Factor-alpha; Tyrosine | 2008 |
Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog.
Following traumatic brain injury (TBI), mitochondrial function becomes compromised. Mitochondrial dysfunction is characterized by intra-mitochondrial Ca(2+) accumulation, induction of oxidative damage, and mitochondrial permeability transition (mPT). Experimental studies show that cyclosporin A (CsA) inhibits mPT. However, CsA also inhibits calcineurin. In the present study, we conducted a dose-response analysis of NIM811, a non-calcineurin inhibitory CsA analog, on mitochondrial dysfunction following TBI in mice, and compared the effects of the optimal dose of NIM811 (10 mg/kg i.p.) against an optimized dose of CsA (20 mg/kg i.p.). Male CF-1 mice were subjected to severe TBI utilizing the controlled cortical impact model. Mitochondrial respiration was assessed from animals treated with either NIM811, CsA, or vehicle 15 min post-injury. The respiratory control ratio (RCR) of mitochondria from vehicle-treated animals was significantly (p<0.01) lower at 3 or 12 h post-TBI, relative to shams. Treatment of animals with either NIM811 or CsA significantly (p<0.03) attenuated this reduction. Consistent with this finding, both NIM811 and CsA significantly reduced lipid peroxidative and protein nitrative damage to mitochondria at 12 h post-TBI. These results showing the ability of NIM811 to fully duplicate the mitochondrial protective efficacy of CsA supports the conclusion that inhibition of the mPT may be sufficient to explain CsA's protective effects. Topics: Acute Disease; Aldehydes; Animals; Biomarkers; Brain Injuries; Cyclosporine; Dose-Response Relationship, Drug; Immunoblotting; Lipid Peroxidation; Male; Mice; Mitochondrial Diseases; Oxidative Stress; Oxygen Consumption; Structure-Activity Relationship; Tyrosine | 2008 |
A neuronal model of Alzheimer's disease: an insight into the mechanisms of oxidative stress-mediated mitochondrial injury.
Alzheimer's disease (AD) is associated with beta-amyloid accumulation, oxidative stress and mitochondrial dysfunction. However, the effects of genetic mutation of AD on oxidative status and mitochondrial manganese superoxide dismutase (MnSOD) production during neuronal development are unclear. To investigate the consequences of genetic mutation of AD on oxidative damages and production of MnSOD during neuronal development, we used primary neurons from new born wild-type (WT/WT) and amyloid precursor protein (APP) (NLh/NLh) and presenilin 1 (PS1) (P264L) knock-in mice (APP/PS1) which incorporated humanized mutations in the genome. Increasing levels of oxidative damages, including protein carbonyl, 4-hydroxynonenal (4-HNE) and 3-nitrotyrosine (3-NT), were accompanied by a reduction in mitochondrial membrane potential in both developing and mature APP/PS1 neurons compared with WT/WT neurons suggesting mitochondrial dysfunction under oxidative stress. Interestingly, developing APP/PS1 neurons were significantly more resistant to beta-amyloid 1-42 treatment, whereas mature APP/PS1 neurons were more vulnerable than WT/WT neurons of the same age. Consistent with the protective function of MnSOD, developing APP/PS1 neurons have increased MnSOD protein and activity, indicating an adaptive response to oxidative stress in developing neurons. In contrast, mature APP/PS1 neurons exhibited lower MnSOD levels compared with mature WT/WT neurons indicating that mature APP/PS1 neurons lost the adaptive response. Moreover, mature APP/PS1 neurons had more co-localization of MnSOD with nitrotyrosine indicating a greater inhibition of MnSOD by nitrotyrosine. Overexpression of MnSOD or addition of MnTE-2-PyP(5+) (SOD mimetic) protected against beta-amyloid-induced neuronal death and improved mitochondrial respiratory function. Together, the results demonstrate that compensatory induction of MnSOD in response to an early increase in oxidative stress protects developing neurons against beta-amyloid toxicity. However, continuing development of neurons under oxidative damage conditions may suppress the expression of MnSOD and enhance cell death in mature neurons. Topics: Aldehydes; Alzheimer Disease; Amyloid beta-Protein Precursor; Animals; Animals, Newborn; Brain; Cell Respiration; Cells, Cultured; Disease Models, Animal; Humans; Membrane Potential, Mitochondrial; Metalloporphyrins; Mice; Mice, Transgenic; Mitochondria; Mitochondrial Diseases; Mutation; Neurons; Oxidative Stress; Presenilin-1; Protein Carbonylation; Superoxide Dismutase; Superoxide Dismutase-1; Tyrosine | 2008 |
Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy.
Abnormalities in energy metabolism and oxidative stress accompany many neurodegenerative diseases, including progressive supranuclear palsy (PSP). Previously, we showed decreased activities of a mitochondrial enzyme complex, alpha-ketoglutarate dehydrogenase complex (KGDHC), and marked increases in tissue malondialdehyde levels in post-mortem superior frontal cortex from the patients with PSP. The current study demonstrates that KGDHC is also significantly diminished (-58%) in the cerebellum from patients with PSP (n = 14), compared to age-matched control brains (n = 13). In contrast to cortex, markers of oxidative stress, such as malondialdehyde, tyrosine nitration or general protein carbonyl modification, did not increase in cerebellum. Furthermore, the protein levels of the individual components of KGDHC did not decline. The activities of two other mitochondrial enzymes were measured to determine whether the changes in KGDHC were selective. The activity of aconitase, a mitochondrial enzyme with an iron/sulfur cluster, is also significantly diminished (-50%), whereas glutamate dehydrogenase activity is unchanged. The present results suggest that the interaction of metabolic impairment and oxidative stress is region-specific in PSP brain. In cerebellum, reductions in KGDHC occur in the absence of increases in common measures of oxidative stress, and may underlie the metabolic deficits and contribute to pathological and clinical manifestation related to the cerebellum in patients with PSP. Topics: Aconitate Hydratase; Animals; Brain Diseases, Metabolic; Cerebellum; Down-Regulation; Energy Metabolism; Glutamate Dehydrogenase; Humans; Immunoblotting; Ketoglutarate Dehydrogenase Complex; Mice; Mitochondria; Mitochondrial Diseases; Nitric Oxide; Oxidative Stress; Subcellular Fractions; Supranuclear Palsy, Progressive; Tyrosine | 2001 |