3-nitrotyrosine has been researched along with Inflammatory-Bowel-Diseases* in 10 studies
10 other study(ies) available for 3-nitrotyrosine and Inflammatory-Bowel-Diseases
Article | Year |
---|---|
Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Inflammatory Bowel Disease.
Leukocyte infiltration, improved levels of intercellular adhesion molecule 1 (ICAM-1), and oxidative stress in the colon are the principal factors in inflammatory bowel disease. The goal of the current study was to explore the effects of adelmidrol, an analog of the anti-inflammatory fatty acid amide signaling molecule palmitoylethanolamide, in mice subjected to experimental colitis. Additionally, to clarify whether the protective action of adelmidrol is dependent on the activation of peroxisome proliferator-activated receptors (PPARs), we investigated the effects of a PPARγ antagonist, GW9662, on adelmidrol action. Adelmidrol (10 mg/kg daily, o.s.) was tested in a murine experimental model of colitis induced by intracolonic administration of dinitrobenzene sulfonic acid. Nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase, as well as tumor necrosis factor-α and interleukin-1β, were significantly increased in colon tissues after dinitrobenzene sulfonic acid administration. Immunohistochemical staining for ICAM-1, P-selectin, nitrotyrosine, and poly(ADP)ribose showed a positive staining in the inflamed colon. Treatment with adelmidrol decreased diarrhea, body weight loss, and myeloperoxidase activity. Adelmidrol treatment, moreover, reduced nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase expression; proinflammatory cytokine release; and the incidence of nitrotyrosine and poly(ADP)ribose in the colon. It also decreased the upregulation of ICAM-1 and P-selectin. Adelmidrol treatment produced a reduction of Bax and an intensification of Bcl-2 expression. This study clearly demonstrates that adelmidrol exerts important anti-inflammatory effects that are partly dependent on PPARγ, suggesting that this molecule may represent a new pharmacologic approach for inflammatory bowel disease treatment. Topics: Amides; Animals; Anti-Inflammatory Agents; Apoptosis; Body Weight; Colitis; Cyclooxygenase 2; Cytokines; Dicarboxylic Acids; Dinitrofluorobenzene; Ethanolamines; Extracellular Signal-Regulated MAP Kinases; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Male; Mice; NF-kappa B; P-Selectin; Palmitic Acids; Peroxidase; Phosphorylation; PPAR alpha; PPAR gamma; Receptor, Cannabinoid, CB2; Signal Transduction; Tyrosine | 2016 |
The anti-inflammatory and antioxidant effects of bergamot juice extract (BJe) in an experimental model of inflammatory bowel disease.
The beneficial properties of the flavonoid fraction of bergamot juice (BJe) have been raising interest and have been the subject of recent studies, considering the potentiality of its health promoting substances. Flavonoids have demonstrated radical-scavenging and anti-inflammatory activities. The aim of the present study was to examine the effects of BJe in mice subjected to experimental colitis.. Colitis was induced in mice by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). BJe was administered daily orally (at 5, 10 and 20 mg/kg).. Four days after DNBS administration, colon nuclear factor NF-κB translocation and MAP kinase phospho-JNK activation were increased as well as cytokine production such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β. Neutrophil infiltration, by myeloperoxidase (MPO) activity, in the mucosa was associated with up-regulation of adhesion molecules (ICAM-1 and P-selectin). Immunohistochemistry for nitrotyrosine and poly ADP-ribose (PAR) also showed an intense staining in the inflamed colon. Treatment with BJe decreased the appearance of diarrhea and body weight loss. This was associated with a reduction in colonic MPO activity. BJe reduced nuclear NF-κB translocation, p-JNK activation, the pro-inflammatory cytokines release, the appearance of nitrotyrosine and PAR in the colon and reduced the up-regulation of ICAM-1 and P-selectin. In addition, colon inflammation was also associated with apoptotic damage. Treatment with BJe caused a decrease of pro-apoptotic Bax expression and an increase of anti-apoptotic Bcl-2 expression.. The results of this study suggested that administration of BJe induced, partly specified, anti-inflammatory mechanisms, which potentially may be beneficial for the treatment of IBD in humans. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; bcl-2-Associated X Protein; Benzenesulfonates; Beverages; Citrus; Colitis; Colon; Disease Models, Animal; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Interleukin-1beta; Male; Mice; Neutrophil Infiltration; NF-kappa B; P-Selectin; Peroxidase; Plant Extracts; Poly Adenosine Diphosphate Ribose; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation | 2015 |
Chemical and cytokine features of innate immunity characterize serum and tissue profiles in inflammatory bowel disease.
Inflammatory bowel disease (IBD) arises from inappropriate activation of the mucosal immune system resulting in a state of chronic inflammation with causal links to colon cancer. Helicobacter hepaticus-infected Rag2(-/-) mice emulate many aspects of human IBD, and our recent work using this experimental model highlights the importance of neutrophils in the pathology of colitis. To define molecular mechanisms linking colitis to the identity of disease biomarkers, we performed a translational comparison of protein expression and protein damage products in tissues of mice and human IBD patients. Analysis in inflamed mouse colons identified the neutrophil- and macrophage-derived damage products 3-chlorotyrosine (Cl-Tyr) and 3-nitrotyrosine, both of which increased with disease duration. Analysis also revealed higher Cl-Tyr levels in colon relative to serum in patients with ulcerative colitis and Crohn disease. The DNA chlorination damage product, 5-chloro-2'-deoxycytidine, was quantified in diseased human colon samples and found to be present at levels similar to those in inflamed mouse colons. Multivariate analysis of these markers, together with serum proteins and cytokines, revealed a general signature of activated innate immunity in human IBD. Signatures in ulcerative colitis sera were strongly suggestive of neutrophil activity, and those in Crohn disease and mouse sera were suggestive of both macrophage and neutrophil activity. These data point to innate immunity as a major determinant of serum and tissue profiles and provide insight into IBD disease processes. Topics: Acute-Phase Proteins; Animals; Biomarkers; Chemokines; Cytokines; Deoxycytidine; Disease Models, Animal; DNA Damage; DNA-Binding Proteins; Female; Helicobacter hepaticus; Helicobacter Infections; Humans; Immunity, Innate; Inflammatory Bowel Diseases; Male; Mice; Mice, Knockout; Tyrosine | 2013 |
Natural almond skin reduced oxidative stress and inflammation in an experimental model of inflammatory bowel disease.
The aim of the present study was to examine the effects of natural almond skin (NS) powder in mice subjected to experimental colitis. Colitis was induced in mice by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). NS powder was administered daily orally (30 mg/kg). Four days after DNBS administration, colon NF-κB and p-JNK activation was increased as well as TNF-α and IL-1β productions. Neutrophil infiltration, by myeloperoxidase (MPO) activity, in the mucosa was associated with up-regulation of ICAM-1 and P-selectin. Immunohistochemistry for i-NOS, nitrotyrosine and poly (ADP-ribose) polymerase (PARP) showed an intense staining in the inflamed colon. Treatment with NS powder significantly reduced the appearance of diarrhea and body weight loss. This was associated with a significant reduction in colonic MPO activity. NS powder also reduced NF-κB and p-JNK activation, the pro-inflammatory cytokines release, the appearance of i-NOS, nitrotyrosine and PARP in the colon and reduced the up-regulation of ICAM-1 and the expression of P-selectin. The results of this study suggested that administration of NS powder may be beneficial for treatment of inflammatory bowel disease. Topics: Animals; Colitis; Colon; fas Receptor; I-kappa B Proteins; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Interleukin-1beta; Lipid Peroxidation; Male; MAP Kinase Kinase 4; Mice; Neutrophil Infiltration; NF-kappa B; NF-KappaB Inhibitor alpha; Nitric Oxide Synthase Type II; Oxidative Stress; P-Selectin; Peroxidase; Phytotherapy; Plant Preparations; Poly(ADP-ribose) Polymerases; Prunus; Tumor Necrosis Factor-alpha; Tyrosine | 2011 |
Methylamine dichloramine may play a role in the process of colorectal disease through architectural and oxidative changes in crypts in mice.
Methylamine dichloramine (CH(3)NCl(2)) produced by neutrophils may promote colon tumors and colitis via architectural and oxidative changes in crypts, which are secretory granulae composed of goblet cells located in the colorectal mucosal layer. We investigated whether CH(3)NCl(2), in comparison with the other reactive oxygen species (ROS) such as H(2)O(2) and HOCl, derived from primed neutrophils in inflammatory sites in the large intestine, is a biogenic factor for the induction of colorectal disease in mice.. Male ICR-strain mice were administered each oxidant (0.5-0.7 micromol/mouse) by enema under anesthesia. The colorectal tissues were evaluated by histopathological and immunohistochemical analyses. Hemolysis and hemoglobin oxidation by the methylamine chloramines and HOCl were examined by adding them (50-400 microM) to a sheep erythrocyte suspension (1x10(8) cells/ml) and its lysate at pH 7 and 37 degrees C.. CH(3)NCl(2) oxidized erythrocyte hemoglobin more effectively than HOCl, indicating it has high cell permeability and selective oxidation ability. CH(3)NCl(2) mainly induced atrophy of crypts at 6 h after administration, while the other ROS tested did not. Furthermore, 4-hydroxy-2-nonenal (4-HNE) showed positive immunostains throughout the mucosal layer, including around the basal regions of atrophied crypts, only with CH(3)NCl(2), while positive immunostains were observed for 3-nitrotyrosine (3-NT) in the atrophied crypts and their surrounding lamina propria in the mucosal layer.. The results suggest that CH(3)NCl(2)derived from primed neutrophils may play the most important role in promoting the development of colon tumor formation and colitis by oxidative stress through its high degree of cell permeability. Topics: Aldehydes; Animals; Chloramines; Colon; Colonic Neoplasms; Hemoglobins; Hemolysis; Hydrogen Peroxide; Hypochlorous Acid; Immunohistochemistry; Inflammatory Bowel Diseases; Intestinal Mucosa; Male; Mice; Mice, Inbred ICR; Neutrophil Activation; Oxidation-Reduction; Sheep; Tyrosine | 2009 |
Erythropoietin reduces the development of experimental inflammatory bowel disease.
Inflammatory bowel disease is characterized by oxidative and nitrosative stress, leukocyte infiltration, and up-regulation of the expression of intercellular adhesion molecule-1 (ICAM-1) in the colon. Erythropoietin (EPO) is a potent stimulator of erythroid progenitor cells, and its expression is enhanced by hypoxia. Here we investigate the effects EPO has on the development of experimental colitis. To address this question, we used an experimental model of colitis induced by dinitrobenzene sulfonic acid (DNBS). When compared with DNBS-treated mice, EPO (1000 IU/kg day s.c.)-treated mice subjected to DNBS-induced colitis experienced significantly lower rates in the extent and severity of the histological signs of colon injury. DNBS-treated mice experienced diarrhea and weight loss. At 4 days after administration of DNBS, the mucosa of the colon exhibited large areas of necrosis. Neutrophil infiltration (determined by histology as well as an increase in myeloperoxidase activity in the mucosa) was associated with up-regulation of ICAM-1. Immunohistochemistry for nitrotyrosine and poly(ADP-ribose) showed an intense staining in the inflamed colon. On the contrary, the treatment of DNBS-treated mice with EPO significantly reduced the degree of diarrhea and weight loss caused by administration of DNBS. EPO also caused a substantial reduction of the degree of colon injury, the rise in myeloperoxidase activity (mucosa), and the increase in staining (immunohistochemistry) for nitrotyrosine as well as the up-regulation of ICAM-1 caused by DNBS in the colon. Thus, treatment of rat with EPO reduces the degree of colitis caused by DNBS. We propose that EPO may be useful in the treatment of inflammatory bowel disease. Topics: Animals; Benzenesulfonates; Colitis; Erythropoietin; Immunohistochemistry; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Interleukin-1; Intestinal Mucosa; Male; Mice; Neutrophil Infiltration; Peroxidase; Poly Adenosine Diphosphate Ribose; Recombinant Proteins; Tumor Necrosis Factor-alpha; Tyrosine | 2004 |
Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants.
Intestinal inflammation is accompanied by excessive production of reactive oxygen and nitrogen metabolites. In order to counteract their harmful effects, the intestinal mucosa contains an extensive system of antioxidants. It has previously been shown that the levels of and the balance between the most important antioxidants are seriously impaired within the intestinal mucosa from inflammatory bowel disease (IBD) patients compared with normal mucosa. The present study investigated the consequences of this antioxidative imbalance by evaluating parameters of oxidative stress-related mucosal damage in the same tissue samples. The extent of apoptosis, peroxynitrite-mediated protein nitration (3-NT), and lipid peroxidation were assessed in relation to the expression of nitric oxide synthase (NOS) and the superoxide-producing enzyme xanthine oxidase (XO). In addition, bi- and multi-variate regression analyses were performed to associate these parameters with the levels of the antioxidants assessed previously. Apoptotic cell death was visualized by TUNEL staining in luminal epithelium of normal controls, and in IBD additionally in the inflammatory infiltrate and in deeper parts of the crypts, but its frequency was unrelated to the severity of inflammation. In Crohn's disease (CD), epithelial apoptosis levels were strongly associated with the expression of XO, implying a role for this enzyme in the regulation of epithelial cell homeostasis, although its levels were unaffected by intestinal inflammation and were comparable to those in normal control mucosa. 3-NT immunoreactivity was substantially increased in luminal crypt cells, neutrophils, and mononuclear cells in the inflamed mucosa of ulcerative colitis (UC) patients. The inflamed IBD luminal epithelium, but not the inflammatory cells, also contained increased amounts of NOS. The immunoreactivity of both 3-NT and NOS was significantly higher in UC than in CD. Unexpectedly, the increased 3-NT expression in UC was associated with neutrophilic myeloperoxidase and not with NOS, which suggests that 3-NT is formed in areas with a dense neutrophilic infiltrate via a peroxynitrite-independent oxidation pathway. Lipid peroxidation, as estimated by the malondialdehyde (MDA) concentration, was elevated in both the inflamed CD and the inflamed UC mucosa, and was identified in the luminal epithelium using a histochemical technique. In CD, lipid peroxidation was independently associated with the concentration of metallothio Topics: Adult; Aged; Antioxidants; Apoptosis; Colitis, Ulcerative; Crohn Disease; Female; Humans; Inflammatory Bowel Diseases; Intestinal Mucosa; Lipid Peroxidation; Male; Middle Aged; Nitric Oxide Synthase; Oxidative Stress; Tyrosine; Xanthine Oxidase | 2003 |
Calpain inhibitor I reduces colon injury caused by dinitrobenzene sulphonic acid in the rat.
Inflammatory bowel disease is characterised by oxidative and nitrosative stress, leucocyte infiltration, upregulation of expression of intercellular adhesion molecule 1 (ICAM-1), and upregulation of P-selectin in the colon. The aim of the present study was to examine the effects of calpain inhibitor I in rats subjected to experimental colitis.. Colitis was induced in rats by intracolonic instillation of dinitrobenzene sulphonic acid (DNBS).. Rats experienced haemorrhagic diarrhoea and weight loss. Four days after administration of DNAB, the mucosa of the colon exhibited large areas of necrosis. Neutrophil infiltration (determined by histology as well as by an increase in myeloperoxidase activity in the mucosa) was associated with upregulation of ICAM-1 and P-selectin as well as high tissue levels of malondialdehyde. Immunohistochemistry for nitrotyrosine and poly (ADP-ribose) polymerase (PARP) showed intense staining in the inflamed colon. Staining of sections of colon obtained from DNBS treated rats with an anti-cyclooxygenase 2 antibody showed diffuse staining of the inflamed tissue. Furthermore, expression of inducible nitric oxide synthase was found mainly in macrophages located within the inflamed colon of DNBS treated rats. Calpain inhibitor I (5 mg/kg daily intraperitoneally) significantly reduced the degree of haemorrhagic diarrhoea and weight loss caused by administration of DNBS. Calpain inhibitor I also caused a substantial reduction in (i) degree of colon injury, (ii) rise in myeloperoxidase activity (mucosa), (iii) increase in tissue levels of malondialdehyde, (iv) increase in staining (immunohistochemistry) for nitrotyrosine and PARP, as well as (v) upregulation of ICAM-1 and P-selectin caused by DNBS in the colon.. Calpain inhibitor I reduces the degree of colitis caused by DNBS. We propose that calpain inhibitor I may be useful in the treatment of inflammatory bowel disease. Topics: Adenosine Diphosphate Ribose; Analysis of Variance; Animals; Cysteine Proteinase Inhibitors; Dinitrobenzenes; Glycoproteins; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Male; Malondialdehyde; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; P-Selectin; Peroxidase; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Sprague-Dawley; Sulfonic Acids; Tyrosine; Up-Regulation | 2001 |
Biochemical model reactions indicative of inflammatory processes. Activities of extracts from Fraxinus excelsior and Populus tremula.
All processes of oxygen activation include very reactive intermediates. Therefore, aerobic cells must cope with--and to some extent also adapt to--oxidative stress provoked for example by infections or intoxications, where these reactive intermediates accumulate. All inflammatory processes include such oxygen activating processes where reactive oxygen species (ROS) are produced. Dependent on the strength of these impact(s), several symptoms indicate the deviation from normal, steady-state metabolism. Intrinsic radical scavenging processes or compounds administered with food thus have to warrant metabolic control within certain limits. Antioxidants which in many cases are free radical scavengers or quenchers of activated states comprise a vast number of classes of organic molecules including phenolics as the most prominent ones. In this publication the activities of extracts from Fraxinus excelsior, Populus tremula and Solidago virgaurea as components of the drug Phytodolor and their mechanisms of protection from oxidative damage are summarized. In addition, new results on tyrosine nitration, a process characteristic for sites of inflammation, and its inhibition by these plant extracts, is reported. Topics: Animals; Antioxidants; Cells, Cultured; Chromatography, High Pressure Liquid; Enzymes; Free Radical Scavengers; Humans; Indicators and Reagents; Inflammation; Inflammatory Bowel Diseases; Lipoproteins, LDL; Lipoxygenase; Models, Biological; Nervous System Diseases; Oxidative Stress; Peroxidase; Plant Extracts; Plants, Medicinal; Respiratory Burst; Respiratory Tract Diseases; Tyrosine; Xanthine Oxidase | 2000 |
Inhibition of poly(ADP-ribose) polymerase attenuates inflammation in a model of chronic colitis.
Crohn's disease is a chronic disease characterized by oxidant-induced tissue injury and increased intestinal permeability. A consequence of oxidative damage is the accumulation of DNA strand breaks and activation of poly(ADP-ribose) polymerase (PARP), which subsequently catalyzes ADP-ribosylation of target proteins. In this study, we assessed the role of PARP in the colitis seen in interleukin (IL)-10 gene-deficient mice. IL-10 gene-deficient mice demonstrated significant alterations in colonic cellular energy status in conjunction with increased permeability, proinflammatory cytokine release, and nitrosative stress. After 14 days of treatment with the PARP inhibitor 3-aminobenzamide, IL-10 gene-deficient mice demonstrated normalized colonic permeability; reduced tumor necrosis factor-alpha and interferon-gamma secretion, inducible nitric oxide synthase expression, and nitrotyrosine levels; and significantly attenuated inflammation. Time course studies demonstrated that 3-aminobenzamide rapidly altered cellular metabolic activity and decreased cellular lactate levels. This was associated with normalization of colonic permeability and followed by a downregulation of proinflammatory cytokine release. Our data demonstrate that inhibition of PARP activity results in a marked improvement of colonic inflammatory disease and a normalization of cellular metabolic function and intestinal permeability. Topics: Animals; Benzamides; Chronic Disease; Colitis; Disease Models, Animal; Energy Metabolism; Enzyme Inhibitors; Inflammatory Bowel Diseases; Interferon-gamma; Interleukin-10; Intestinal Absorption; Intestinal Mucosa; Mice; Mice, Inbred Strains; Mice, Knockout; Neutrophils; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Proteins; Tumor Necrosis Factor-alpha; Tyrosine | 2000 |