3-nitrotyrosine has been researched along with Inflammation* in 180 studies
8 review(s) available for 3-nitrotyrosine and Inflammation
Article | Year |
---|---|
S-Nitrosylation in Regulation of Inflammation and Cell Damage.
Cell signaling through nitric oxide (NO) is a multifaceted mechanism, which regulates metabolic activities and fate in different tissues. The peroxynitrite (ONOO-) formed as reaction product of nitric oxide radical and superoxide interacts with cell membrane phospholipids and proteins causing damage.. The reaction kinetics to form nitrotyrosine (ONOO-tyrosine) and/or nitrosylated cysteine (ONOO-cysteine) in protein molecules during posttranslational modification and nitration of lipids are therefore critical in determining cells' signaling mechanism for survival or apoptosis.. The nitrosylation was found to modulate GPCRs and activation of guanylate cyclase as well as regulate NF-κB activation. The recent findings have shown the neuroprotective effects of S- nitrosylation, though mechanism is unclear.. While keeping the background in mind, we address here the biological function of NO derivatives in medicine. We target four known compounds: SNAP, SIN- 1 chloride, SNP and GSNO to understand the effect of NO in different tissues. Here we analyze the existing findings to assess therapeutic relevance of NO-signaling during inflammation, vasodilation and tolerance. Topics: Gene Expression Regulation; Guanylate Cyclase; Humans; Inflammation; Lipids; NF-kappa B; Nitric Oxide; Peroxynitrous Acid; Protein Processing, Post-Translational; Receptors, G-Protein-Coupled; Signal Transduction; Superoxides; Tyrosine | 2018 |
Tyrosine nitration as mediator of cell death.
Nitrotyrosine is used as a marker for the production of peroxynitrite and other reactive nitrogen species. For over 20 years the presence of nitrotyrosine was associated with cell death in multiple pathologies. Filling the gap between correlation and causality has proven to be a difficult task. Here, we discuss the evidence supporting tyrosine nitration as a specific posttranslational modification participating in the induction of cell death signaling pathways. Topics: Animals; Cell Death; HSP90 Heat-Shock Proteins; Humans; Inflammation; Peroxynitrous Acid; Reactive Nitrogen Species; Signal Transduction; Superoxide Dismutase; Tyrosine | 2014 |
Nitrative stress in inflammatory lung diseases.
Since the discovery of nitric oxide (NO), an intracellular signal transmitter, the role of NO has been investigated in various organs. In the respiratory system, NO derived from the constitutive type of NO synthase (cNOS, NOS1, NOS3) induces bronchodilation and pulmonary vasodilatation to maintain homeostasis. In contrast, the roles of excessive NO derived from the inducible type of NOS (iNOS, NOS2) in airway and lung inflammation in inflammatory lung diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD) are controversial. In these inflammatory lung diseases, excessive nitrosative stress has also been observed. In asthma, some reports have shown that nitrosative stress causes airway inflammation, airway hyperresponsiveness, and airway remodeling, which are the features of asthma, whereas others have demonstrated the anti-inflammatory role of NO derived from NOS2. In the case of refractory asthma, more nitrosative stress has been reported to be observed in such airways compared with that in well-controlled asthmatics. In COPD, reactive nitrogen species (RNS), which are NO and NO-related molecules including nitrogen dioxide and peroxynitrite, cause lung inflammation, oxidative stress, activation of matrix metalloproteinase, and inactivation of antiprotease, which are involved in the pathophysiology of the disease. In the present paper, we review the physiological and pathophysiological effects of NO and NO-related molecules in the respiratory system and in inflammatory lung diseases. Topics: Animals; Asthma; Humans; Inflammation; Lung; Lung Diseases; Nitric Oxide; Nitric Oxide Synthase; Oxidative Stress; S-Nitrosothiols; Signal Transduction; Tyrosine | 2011 |
Nitrative stress through formation of 8-nitroguanosine: insights into microbial pathogenesis.
Reactive oxygen and nitrogen species, respectively, mediate oxidative and nitrative stresses by means of oxidation and nitration of various biomolecules including proteins, lipids, and nucleic acids. We have observed nitric oxide (NO)-dependent formation of 8-nitroguanosine and 3-nitrotyrosine during microbial infection, and we determined that both 8-nitroguanosine and 3-nitrotyrosine are useful biomarkers of nitrative stress. Of importance, however, is the great difference in biological characteristics of these two nitrated compounds. 8-Nitroguanosine has unique biochemical and pharmacological properties such as redox activity and mutagenic potential, which 3-nitrotyrosine does not. In this review, we discuss the mechanism of nitrative stress occurring during microbial infections, with special emphasis on biological functions of 8-nitroguanosine formed via NO during the host response to pathogens. These findings provide insights into NO-mediated pathogenesis not only of viral infections but also of many other diseases. Topics: Animals; Bacterial Infections; DNA Damage; DNA Repair; Guanosine; Humans; Inflammation; Mice; Models, Biological; Mutagenesis; Nitric Oxide; Nitro Compounds; Oxidation-Reduction; RNA; Tyrosine; Virus Diseases; Virus Replication | 2006 |
Immunogenicity of an inflammation-associated product, tyrosine nitrated self-proteins.
To understand the mechanism leading to autoantibody production, it is of importance to reveal how self-components that are otherwise inactive as antigens acquire immunogenicity. One possible mechanism is the generation of structurally modified self-proteins in apoptotic or inflamed tissues. The post-translational modification of proteins might give rise to the generation of new epitopes to which T and B lymphocytes are not rendered tolerant. Among the protein modifications, this review is focussed on the generation and the immunogenicity of self-proteins carrying 3-nitrotyrosine (NT), an inflammation-associated marker. NT-proteins are generated in vivo by nitration with peroxynitrite, which is formed from nitric oxide and superoxide that are released from activated inflammatory cells. Interestingly, many anti-DNA Abs from autoimmune mice have been shown cross-reactive with NT. Analysis of the immunogenicity of NT-carrying self-proteins has revealed that they elicit both humoral and cellular immune responses in mice. Thus, NT-containing epitopes created on self-proteins may serve as a trigger to impair or bypass immunological tolerance. Topics: Animals; Autoantibodies; Autoantigens; Epitopes; Inflammation; Protein Processing, Post-Translational; Proteins; Tyrosine | 2005 |
Roles of nitric oxide and superoxide in inflammation.
Topics: 2-Naphthylamine; Animals; Arginine; Blotting, Western; Capillary Permeability; Chemotaxis, Leukocyte; Citrulline; Fluorescent Dyes; Fluorometry; Inflammation; Nitrates; Nitric Oxide; Nitrites; Oxidation-Reduction; Oxidative Stress; Peroxynitrous Acid; Rats; Superoxides; Tyrosine | 2003 |
Biological aspects of reactive nitrogen species.
Nitric oxide (NO) plays an important role as a cell-signalling molecule, anti-infective agent and, as most recently recognised, an antioxidant. The metabolic fate of NO gives rise to a further series of compounds, collectively known as the reactive nitrogen species (RNS), which possess their own unique characteristics. In this review we discuss this emerging aspect of the NO field in the context of the formation of the RNS and what is known about their effects on biological systems. While much of the insight into the RNS has been gained from the extensive chemical characterisation of these species, to reveal biological consequences this approach must be complemented by direct measures of physiological function. Although we do not know the consequences of many of the dominant chemical reactions of RNS an intriguing aspect is now emerging. This review will illustrate how, when specificity and amplification through cell signalling mechanisms are taken into account, the less significant reactions, in terms of yield or rates, can explain many of the biological responses of exposure of cells or physiological systems to RNS. Topics: Animals; Apoptosis; Inflammation; Lipoproteins; Membranes; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitrogen; Oxidation-Reduction; Signal Transduction; Tyrosine; Vasodilation | 1999 |
Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease?
Topics: Animals; Free Radicals; Humans; Inflammation; Lung; Lung Diseases; Nitric Oxide; Tyrosine | 1999 |
6 trial(s) available for 3-nitrotyrosine and Inflammation
Article | Year |
---|---|
NOD2 expression, DNA damage and oxido-inflammatory status in atopic bronchial asthma: Exploring their nexus to disease severity.
Allergic asthma is a chronically relapsing inflammatory airway disease with a complex pathophysiology.. This study was undertaken to investigate the potential contribution of NOD2 signaling, proinflammatory cytokines, chitotriosidase (CHIT1) activity, oxidative stress and DNA damage to atopic asthma pathogenesis, as well as to explore their possible role as surrogate noninvasive biomarkers for monitoring asthma severity.. Sixty patients with atopic bronchial asthma who were divided according to asthma severity into 40 mild-moderate, 20 severe atopic asthmatics, in addition to thirty age-matched healthy controls were enrolled in this study. NOD2 expression in PBMCs was assessed by quantitative real-time RT-PCR. DNA damage indices were assessed by alkaline comet assay. Serum IgE, IL-17, IL-8 and 3-Nitrotyrosine levels were estimated by ELISA. Serum CHIT1and GST activities, as well as MDA levels, were measured.. NOD2 mRNA relative expression levels were significantly decreased in atopic asthmatic cases relative to controls with lower values among severe atopic asthmatics. On the other hand, IL-17 and IL-8 serum levels, CHIT1 activity, DNA damage indices and oxidative stress markers were significantly increased in atopic asthmatic cases relative to controls with higher values among severe atopic asthmatics. The change in these parameters correlated significantly with the degree of decline in lung function.. The interplay between NOD2 signaling, proinflammatory cytokines, CHIT1 activity, heightened oxidative stress and DNA damage orchestrates allergic airway inflammation and thus contributing to the pathogenesis of atopic asthma. These parameters qualified for measurement as part of new noninvasive biomarker panels for monitoring asthma severity. Topics: Adult; Asthma; DNA Damage; Female; Gene Expression Regulation, Enzymologic; Hexosaminidases; Humans; Immunoglobulin E; Inflammation; Interleukin-17; Interleukin-8; Leukocytes, Mononuclear; Male; Middle Aged; Nod2 Signaling Adaptor Protein; Oxidation-Reduction; Oxidative Stress; Severity of Illness Index; Tyrosine | 2018 |
Vitamin C further improves the protective effect of GLP-1 on the ischemia-reperfusion-like effect induced by hyperglycemia post-hypoglycemia in type 1 diabetes.
It has been reported that hyperglycemia following hypoglycemia produces an ischemia-reperfusion-like effect in type 1 diabetes. In this study the possibility that GLP-1 has a protective effect on this phenomenon has been tested.. 15 type 1 diabetic patients underwent to five experiments: a period of two hours of hypoglycemia followed by two hours of normo-glycemia or hyperglycemia with the concomitant infusion of GLP-1 or vitamin C or both. At baseline, after 2 and 4 hours, glycemia, plasma nitrotyrosine, plasma 8-iso prostaglandin F2alpha, sCAM-1a, IL-6 and flow mediated vasodilation were measured.. After 2 h of hypoglycemia, flow mediated vasodilation significantly decreased, while sICAM-1, 8-iso-PGF2a, nitrotyrosine and IL-6 significantly increased. While recovering with normoglycemia was accompanied by a significant improvement of endothelial dysfunction, oxidative stress and inflammation, a period of hyperglycemia after hypoglycemia worsens all these parameters. These effects were counterbalanced by GLP-1 and better by vitamin C, while the simultaneous infusion of both almost completely abolished the effect of hyperglycemia post hypoglycemia.. This study shows that GLP-1 infusion, during induced hyperglycemia post hypoglycemia, reduces the generation of oxidative stress and inflammation, improving the endothelial dysfunction, in type 1 diabetes. Furthermore, the data support that vitamin C and GLP-1 may have an additive protective effect in such condition. Topics: Adult; Antioxidants; Ascorbic Acid; Biomarkers; Blood Glucose; Diabetes Mellitus, Type 1; Dinoprost; Female; Glucagon-Like Peptide 1; Humans; Hyperglycemia; Hypoglycemia; Hypoglycemic Agents; Inflammation; Inflammation Mediators; Infusions, Parenteral; Intercellular Adhesion Molecule-1; Interleukin-6; Male; Oxidative Stress; Reperfusion Injury; Time Factors; Treatment Outcome; Tyrosine; Vasodilation; Young Adult | 2013 |
Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors.
Blood glucose fluctuations have been found to be relevant to the progression of atherosclerosis in patients with type 2 diabetes and to be more detrimental for the development of atherosclerosis than the sustained hyperglycemia. We aim at evaluating the effect of blunted daily acute glucose fluctuations by DPP-IV inhibitors on intima-media thickness (IMT), a surrogate marker for early atherosclerosis.. Data from a 12-week prospective, randomized, open-label parallel group trial with a blinded-endopoint study on 90 patients with DMT2, assessing the role of Dipeptidyl Peptidase-4 inhibition in lowering oxidative stress and inflammation by reducing daily acute glucose fluctuations (MAGE), were included in the present analysis.. Administration of both sitagliptin and vildagliptin treatment resulted in a significant decline in IMT. Indeed, vs baseline data Vildagliptin vs Sitagliptin resulted in a greater IMT reduction. After 3 months therapy changes in IMT significantly correlated with changes in MAGE but not with change in HbA1c in the whole population. Only change in MAGE and LDL plasma levels resulted to be independent predictors of the reduced carotid intima-media thickness after adjusting for conventional cardiovascular risk factors in patients with type 2 diabetes. Significant correlations between change in MAGE, change in IMT and change in fasting and interprandial inflammation score and nitrotyrosine plasma levels were found.. Reduction of glucose excursion due to DPP-IV inhibitors administration, may prevent atherosclerosis progression in patients with type 2 diabetes probably through the reduction of daily inflammation and oxidative stress. Topics: Adamantane; Atherosclerosis; Blood Glucose; Carotid Arteries; Carotid Artery Diseases; Carotid Intima-Media Thickness; Cytokines; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glycated Hemoglobin; Humans; Inflammation; Nitriles; Oxidative Stress; Prospective Studies; Pyrazines; Pyrrolidines; Sitagliptin Phosphate; Triazoles; Tyrosine; Vildagliptin | 2013 |
Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support.
In the present study, we evaluated circulating pro-inflammatory mediators and markers of oxidative stress in patients with decompensated CHF (congestive heart failure) and assessed whether clinical recompensation by short-term inotropic therapy influences these parameters. Patients with worsening CHF (n=29, aged 61.9+/-2.7 years), NYHA (New York Heart Association) class III-IV, and left ventricular ejection fraction of 23.7+/-1.8% were studied. Controls comprised age-matched healthy volunteers (n=15; 54.1+/-3.2 years). Plasma levels of cytokines [IL (interleukin)-6 and IL-18], chemokines [MCP-1 (monocyte chemotactic protein-1)], adhesion molecules [sICAM (soluble intercellular adhesion molecule), sE-selectin (soluble E-selectin)], systemic markers of oxidation [TBARS (thiobarbituric acid-reactive substances), 8-isoprostaglandin F(2alpha) and nitrotyrosine] and hs-CRP (high-sensitivity C-reactive protein) were measured by ELISA and colorimetric assays at admission and 30 days following 72-h milrinone (n=15) or dobutamine (n=14) infusion. Plasma IL-6, IL-18, sICAM, E-selectin, hs-CRP and oxidative markers were significantly higher in patients on admission before inotropic treatment compared with controls (P<0.05). Short-term inotropic support improved clinical status as assessed by NYHA classification and by the 6-min walk test and significantly decreased plasma levels of IL-6, IL-18, sICAM, hs-CRP and markers of oxidation (P<0.05) at 30 days. The effects of milrinone and dobutamine were similar. In conclusion, our results demonstrate that patients with decompensated CHF have marked systemic inflammation and increased production of oxygen free radicals. Short-term inotropic support improves functional status and reduces indices of inflammation and oxidative stress in patients with decompensated CHF. Topics: Biomarkers; C-Reactive Protein; Cardiotonic Agents; Case-Control Studies; Cell Adhesion Molecules; Chemokine CCL2; Colorimetry; Cytokines; Dinoprost; Disease Progression; Dobutamine; E-Selectin; Enzyme-Linked Immunosorbent Assay; Exercise Test; Female; Heart Failure; Humans; Inflammation; Interleukin-18; Interleukin-6; Male; Middle Aged; Milrinone; Oxidative Stress; Thiobarbituric Acid Reactive Substances; Tyrosine | 2006 |
Stent-induced neutrophil activation is associated with an oxidative burst in the inflammatory process, leading to neointimal thickening.
Activation of leukocytes plays an essential role in the mechanism of restenosis. Prior research has focused on monocytes and little is known about the role of neutrophils in this process. Neutrophils are known to contribute to tissue injury through oxygen-derived free radicals that nitrate tyrosine. This study was designed to elucidate clinically the role of neutrophil-mediated oxidative burst in the regulation of the post-stent inflammatory process. In 36 patients undergoing coronary stenting, we serially measured serum levels of glycosyl-phosphatidil-inositol-anchored protein (GPI)-80,a modulator of Mac-1 on the surface of neutrophils, in samples of coronary sinus as well as peripheral blood. We also simultaneously measured the serum 3-nitrotyrosine/tyrosine ratio as an index of oxidative stress. The GPI-80 level and the 3-nitrotyrosine/tyrosine ratio increased in the coronary sinus after coronary stenting in a time-dependent manner; with the maximum increase of GPI-80 level (3.1 +/- 2.9 to 8.6 +/- 4.3 ng/ml, P < 0.01) at 48 hours, and 3-nitrotyrosine/tyrosine ratio at 24 hrs (5.2 +/- 4.8 to 28.4 +/- 13.2 x 10(-4), P < 0.01), more strikingly than in the peripheral blood. In the coronary sinus blood, the 3-nitrotyrosine/tyrosine ratio was correlated with GPI-80 levels at 24 hr (R = 0.58, P < 0.001) and at 48 hr (R = 0.41, P < 0.01). Multiple regressions analysis showed that the maximum responses of GPI-80 level and 3-nitrotyrosine/tyrosine ratio were independent predictors of angiographic late lumen loss. Our results may support a hypothesis that Mac-1-dependent activation of neutrophils causes oxidative burst in the post-stent inflammatory process, possibly leading to restenosis. Topics: Amidohydrolases; Angioplasty, Balloon, Coronary; Cell Adhesion Molecules; Coronary Artery Disease; Coronary Restenosis; Coronary Vessels; Female; GPI-Linked Proteins; Humans; Hydrolases; Inflammation; Male; Neutrophil Activation; Neutrophils; Regression Analysis; Respiratory Burst; Stents; Time Factors; Tunica Intima; Tyrosine | 2006 |
Statins promote potent systemic antioxidant effects through specific inflammatory pathways.
The pleiotropic actions of hydroxymethylglutaryl CoA reductase inhibitors (statins) include antiinflammatory and antioxidant actions. We recently reported that statins induce reductions in plasma protein levels of nitrotyrosine (NO2Tyr), a modification generated by nitric oxide-derived oxidants. Whether alternative oxidative pathways are suppressed in vivo after statin administration has not yet been reported.. As an extension of our prior study, hypercholesterolemic subjects with no known coronary artery disease were evaluated at baseline and after 12 weeks of atorvastatin therapy (10 mg/d). Plasma levels of protein-bound chlorotyrosine, NO2Tyr, dityrosine, and orthotyrosine, specific molecular fingerprints for distinct oxidative pathways upregulated in atheroma, were determined by mass spectrometry. In parallel, alterations in lipoproteins and C-reactive protein were determined. Statin therapy caused significant reductions in chlorotyrosine, NO2Tyr, and dityrosine (30%, 25%, and 32%, respectively; P<0.02 each) that were similar in magnitude to reductions in total cholesterol and apolipoprotein B-100 (25% and 29%, P<0.001 each). Nonsignificant decreases in orthotyrosine and C-reactive protein levels were observed (9% and 11%, respectively; P>0.10 each). Statin-induced reductions in oxidation markers were independent of decreases in lipids and lipoproteins.. Statins promote potent systemic antioxidant effects through suppression of distinct oxidation pathways. The major pathways inhibited include formation of myeloperoxidase-derived and nitric oxide-derived oxidants, species implicated in atherogenesis. The present results suggest potential mechanisms that may contribute to the beneficial actions of statins. They also have important implications for monitoring the antiinflammatory and antioxidant actions of these agents. Topics: Antioxidants; Arteriosclerosis; Atorvastatin; Biomarkers; C-Reactive Protein; Female; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Inflammation; Lipoproteins; Male; Middle Aged; Oxidation-Reduction; Prospective Studies; Pyrroles; Reactive Oxygen Species; Signal Transduction; Statistics, Nonparametric; Tyrosine | 2003 |
166 other study(ies) available for 3-nitrotyrosine and Inflammation
Article | Year |
---|---|
Hyperhomocysteinemia-Induced Oxidative Stress Exacerbates Cortical Traumatic Brain Injury Outcomes in Rats.
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality among military service members and civilians in the United States. Despite significant advances in the understanding of TBI pathophysiology, several clinical reports indicate that multiple genetic and epigenetic factors can influence outcome. Homocysteine (HCY) is a non-proteinogenic amino acid, the catabolism of which can be dysregulated by stress, lifestyle, aging, or genetic abnormalities leading to hyperhomocysteinemia (HHCY). HHCY is a neurotoxic condition and a risk factor for multiple neurological and cardiovascular disorders that occurs when HCY levels is clinically > 15 µM. Although the deleterious impact of HHCY has been studied in human and animal models of neurological disorders such as stroke, Alzheimer's disease and Parkinson's disease, it has not been addressed in TBI models. This study tested the hypothesis that HHCY has detrimental effects on TBI pathophysiology. Moderate HHCY was induced in adult male Sprague Dawley rats via daily administration of methionine followed by impact-induced traumatic brain injury. In this model, HHCY increased oxidative stress, upregulated expression of proteins that promote blood coagulation, exacerbated TBI-associated blood-brain barrier dysfunction and promoted the infiltration of inflammatory cells into the cortex. We also observed an increase of brain injury-induced lesion size and aggravated anxiety-like behavior. These findings show that moderate HHCY exacerbates TBI outcomes and suggest that HCY catabolic dysregulation may be a significant biological variable that could contribute to TBI pathophysiology heterogeneity. Topics: Animals; Anxiety; Behavior, Animal; Blood Coagulation; Blood-Brain Barrier; Brain Injuries, Traumatic; Cerebral Cortex; Homocysteine; Hyperhomocysteinemia; Inflammation; Intercellular Adhesion Molecule-1; Male; Methionine; Occludin; Oxidative Stress; Rats, Sprague-Dawley; Tyrosine; Zonula Occludens-1 Protein | 2021 |
Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of Intestinal Homeostasis and Immune Response.
The intestines are recognized as the main source of chronic inflammation in chronic kidney disease (CKD) and, among other cells, macrophages are involved in modulating this process as well as in the impaired immune response which also occurs in CKD patients. In this study, we evaluated the effect of Indoxyl Sulfate (IS), a protein bound uremic toxin poorly eliminated by hemodialysis, on inflammatory, oxidative stress and pro-apoptotic parameters, at the intestinal level in mice, on intestinal epithelial cells (IEC-6) and on primary murine peritoneal macrophages. C57BL/6J mice were treated with IS (800 mg/kg i.p.) for 3 or 6 h and histopathological analysis showed that IS induced intestinal inflammation and increased cyclooxygenase-2 (COX-2), nitrotyrosine and Bax expression in intestinal tissue. In IEC-6 cells, IS (125-1000 µM) increased tumor necrosis factor-α levels, COX-2 and inducible nitric oxide synthase expression and nitrotyrosine formation. Moreover, IS increased pro-oxidant, pro-inflammatory and pro-apoptotic parameters in peritoneal macrophages from IS-treated mice. Also, the serum concentration of IS and pro-inflammatory levels of cytokines resulted increased in IS-treated mice. Our results indicate that IS significantly contributes to affect intestinal homeostasis, immune response, and to induce a systemic pro-inflammatory state thus highlighting its potential role as therapeutic target in CKD patients. Topics: Animals; bcl-2-Associated X Protein; Cyclooxygenase 2; Gene Expression Regulation; Indican; Inflammation; Intestinal Mucosa; Mice; Mice, Inbred C57BL; Nitric Oxide Synthase Type II; Oxidative Stress; Renal Insufficiency, Chronic; Tumor Necrosis Factor-alpha; Tyrosine | 2021 |
Sex and Age-Related Differences in Neuroinflammation and Apoptosis in
(1) Background: The pro-resolving lipid mediator Resolvin D1 (RvD1) has already shown protective effects in animal models of diabetic retinopathy. This study aimed to investigate the retinal levels of RvD1 in aged (24 months) and younger (3 months) Topics: Aging; Animals; Apoptosis; Biomarkers; Caspase 3; Docosahexaenoic Acids; Ependymoglial Cells; Female; Inflammation; Male; Mice, Inbred BALB C; Microglia; NF-kappa B; Retina; Sex Characteristics; Tumor Necrosis Factor-alpha; Tyrosine | 2021 |
Role of aspirin-triggered lipoxin A4, aspirin, and salicylic acid in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre-eclampsia.
Oxidative stress and inflammation are key events leading to pre-eclampsia, involved in several maternal deaths. Low doses of acetylsalicylic acid (ASA) are used in the prevention and treatment of pre-eclampsia. The synthesis of aspirin-triggered lipoxin (ATL) by cyclooxygenase-2 acetylation is an alternative mechanism of ASA, which could explain the effectiveness of ASA treatments. The aim of this study was to evaluate the role of ASA, salicylates, and ATL in the modulation of the oxidative and inflammatory responses induced by plasma from women with pre-eclampsia.. Plasma from 14 women with pre-eclampsia and 17 normotensive pregnant women was probed for inducing oxidative and inflammatory responses on endothelial cells and U937 promonocytes. The role of ATL, ASA, and salicylic acid (SA) on these events was evaluated.. Plasma from women with pre-eclampsia induced TBARS and nitrotyrosine production on endothelial and U937 cells. Pre-treatment with both ATL and ASA decreased the TBARS production, while ATL decreased the nitrotyrosine. Pre-eclamptic plasma augmented the translocation of NF-kB on U937 cells, which decreased by a high dose of ASA and SA. Finally, the pre-eclamptic plasma increased the adhesion of leukocytes-PMN and monocytes-to endothelium, and we were able to determine a state of resolution of inflammation, since ATL decreased the PMN adhesion, and conversely, it increased the monocytes adhesion to endothelium.. Together, these results suggest that ATL could explain the beneficial actions of ASA and support further research on mechanisms, real efficacy, and rational use of ASA in pre-eclampsia. Topics: Acetylation; Adolescent; Adult; Aspirin; Cell Adhesion; Cyclooxygenase 2; Female; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Lipoxins; Neutrophils; NF-kappa B; Oxidative Stress; Pre-Eclampsia; Pregnancy; Protein Processing, Post-Translational; Salicylic Acid; Thiobarbituric Acid Reactive Substances; Tyrosine; U937 Cells; Young Adult | 2020 |
Egg white consumption increases GSH and lowers oxidative damage in 110-week-old geriatric mice hearts.
The number of geriatrics with an advanced age is rising worldwide, with attendant cardiovascular disorders, characterized by elevated oxidative stress. Such oxidative stress is accelerated by an age-related loss of critical antioxidants like glutathione (GSH) and dietary solutions to combat this loss does not exist. While egg white is rich in sulphur amino acids (AAs), precursors for GSH biosynthesis, whether they can increase sulphur AA in vivo and augment GSH in the aged myocardium remain unclear. We hypothesized that egg white consumption increases GSH and reduces oxidative damage and inflammation in the geriatric heart. To this end, 101-102 week-old mice were given a AIN 76A diet supplemented with either 9% w/w egg white powder or casein for 8 weeks. Subsequent analysis revealed that egg white increased serum sulphur AA and cardiac GSH, while reducing the cysteine carrying transporter SNAT-2 and elevating glutamine transporter ASCT2 in the heart. Increased GSH was accompanied by elevated expression of GSH biosynthesis enzyme glutathione synthase as well as mitochondrial antioxidants like superoxide dismutase 2 and glutathione peroxidase 1 in egg white-fed hearts. These hearts also demonstrated lower oxidative damage of lipids (4-hydroxynonenal) and proteins [nitrotyrosine] with elevated anti-inflammatory IL-10 gene expression. These data demonstrate that even at the end of lifespan, egg whites remain effective in promoting serum sulphur AAs and preserve cardiac GSH with potent anti-oxidant and mild anti-inflammatory effects in the geriatric myocardium. We conclude that egg white intake may be an effective dietary strategy to attenuate oxidative damage in the senescent heart. Topics: Aging; Aldehydes; Amino Acids, Sulfur; Animal Feed; Animals; Antioxidants; Egg White; Glutathione; Glutathione Synthase; Inflammation; Lipid Peroxidation; Male; Mice; Mice, Inbred C57BL; Myocardium; Oxidative Stress; Tyrosine | 2020 |
Differential regulation of Nrf2 is linked to elevated inflammation and nitrative stress in monocytes of children with autism.
Autism spectrum disorder (ASD) is a very complex neurodevelopmental disorder characterized by deficits in social and communication skills. Innate immune cells like monocytes are believed to play a cardinal role in neuroimmune inflammation and nitrative stress. On the other hand, Nrf2, a basic leucine zipper transcription factor plays a significant role in protecting the immune cells against inflammation and oxidants. However, its role in monocytes of ASD children and typically developing control (TDC) children has not been elucidated in relation with inflammation and nitrative stress. Therefore, this study was undertaken to evaluate Nrf2 expression/activity along with parameters of inflammation (NFkB, IL-6, IL-1β) and nitrative stress (iNOS, nitrotyrosine) in monocytes of ASD/TDC children. Further, sulforaphane (SFN) was utilized as an Nrf2 activator to assess its effect on above said inflammatory and nitrative stress parameters. Our study shows that monocytes of ASD subjects have decreased Nrf2 expression/activity along with increased inflammation and nitrative stress. Further, monocytes from ASD have deficiency in induction of Nrf2 activity upon stimulation with LPS. However, activation of Nrf2 in vitro by SFN reverses LPS-induced effects on inflammation in monocytes by reduction in NFkB signaling. Further, treatment with SFN also reverses LPS-induced effects on nitrative stress (iNOS, nitrotyrosine) in monocytes of ASD subjects. This study propounds the idea that SFN protects against nitrative stress and inflammation by downregulating oxidative stress and inflammation through blockade of NFkB signaling in autistic children. This may be the reason behind reported ameliorative effects of SFN in ASD subjects. Topics: Autism Spectrum Disorder; Child; Cross-Sectional Studies; Cytokines; Female; Humans; Inflammation; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Male; Monocytes; NF-E2-Related Factor 2; NF-kappa B; Nitric Oxide Synthase Type II; Oxidative Stress; Signal Transduction; Tyrosine | 2020 |
Association between plasma dipeptidyl peptidase-4 activity to brain-derived neurotrophic factor ratio and depressive symptoms in middle-aged and older adults with normal glucose tolerance: A cross-sectional study.
Topics: Aged; Brain-Derived Neurotrophic Factor; Cross-Sectional Studies; Depression; Dipeptidyl Peptidase 4; F2-Isoprostanes; Glucose; Humans; Inflammation; Middle Aged; Oxidative Stress; Tyrosine | 2020 |
Simultaneous LC-MS/MS-Based Quantification of Free 3-Nitro-l-tyrosine, 3-Chloro-l-tyrosine, and 3-Bromo-l-tyrosine in Plasma of Colorectal Cancer Patients during Early Postoperative Period.
Quantification with satisfactory specificity and sensitivity of free 3-Nitro-l-tyrosine (3-NT), 3-Chloro-l-tyrosine (3-CT), and 3-Bromo-l-tyrosine (3-BT) in biological samples as potential inflammation, oxidative stress, and cancer biomarkers is analytically challenging. We aimed at developing a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for their simultaneous analysis without an extract purification step by solid-phase extraction. Validation of the developed method yielded the following limits of detection (LOD) and quantification (LOQ) for 3-NT, 3-BT, and 3-CT: 0.030, 0.026, 0.030 ng/mL (LODs) and 0.100, 0.096, 0.098 ng/mL (LOQs). Coefficients of variation for all metabolites and tested concentrations were <10% and accuracy was within 95-105%. Method applicability was tested on colorectal cancer patients during the perioperative period. All metabolites were significantly higher in cancer patients than healthy controls. The 3-NT was significantly lower in advanced cancer and 3-BT showed a similar tendency. Dynamics of 3-BT in the early postoperative period were affected by type of surgery and presence of surgical site infections. In conclusion, a sensitive and specific LC-MS/MS method for simultaneous quantification of free 3-NT, 3-BT, and 3-CT in human plasma has been developed. Topics: Aged; Biomarkers; Chromatography, Liquid; Colorectal Neoplasms; Female; Humans; Inflammation; Male; Metabolomics; Middle Aged; Nitrosative Stress; Oxidative Stress; Postoperative Complications; Postoperative Period; Prospective Studies; Reactive Oxygen Species; Reproducibility of Results; Sensitivity and Specificity; Surgical Wound Infection; Tandem Mass Spectrometry; Tyrosine | 2020 |
Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model.
The current study was conducted to investigate the potential protective effects of hesperidin and its possible mechanisms of action on pancreatic β-cells in diabetes.. Male Sprague Dawley rats were made diabetic using 65 mg/kg intraperitoneal injection of streptozotocin, and then administered daily with 100 mg/kg of hesperidin over 4 weeks. On conclusion of the experiment, blood and pancreatic tissue were collected to determine the function of β-cells, apoptosis, oxidative stress, ER stress, and inflammation.. Treatment of diabetic rats with hesperidin, significantly decreased fasting blood glucose and food intake, along with increased body weight, serum and pancreatic insulin levels, and pancreatic-duodenal homeobox-1 (PDX-1) protein expression. The beneficial roles of hesperidin on diabetic pancreatic β-cells exhibited an increment in antioxidant SOD and GPx activities, and a decrement in nitrotyrosine as well as malondialdehyde (MDA) levels. Additionally, the elevated concentration of TNF-α and expressions of ER stress maker GRP78 and CHOP proteins in the pancreas of diabetic rats were significantly diminished by hesperidin treatment. Furthermore, hesperidin effectively modulated expressions of apoptosis-regulatory proteins in diabetic rat pancreas, as revealed by upregulating anti-apoptotic Bcl-xL; with a concomitant downregulating pro-apoptotic Bax, cleaved caspase-3, and inhibiting the activation of DNA repair protein poly (ADP-ribose) polymerase (PARP).. Collectively, these findings suggest that hesperidin may have the potential to protect pancreatic β-cells and improve their function by suppressing oxidative and ER stress, along with activating its antioxidant, anti-inflammatory, and anti-apoptotic effects. Topics: Animals; Apoptosis; Apoptosis Regulatory Proteins; Blood Glucose; Diabetes Mellitus, Experimental; Eating; Endoplasmic Reticulum Stress; Glutathione Peroxidase; Heat-Shock Proteins; Hesperidin; Homeodomain Proteins; Inflammation; Insulin; Insulin-Secreting Cells; Male; Malondialdehyde; Oxidative Stress; Pancreas; Protective Agents; Rats; Superoxide Dismutase; Trans-Activators; Transcription Factor CHOP; Tumor Necrosis Factor-alpha; Tyrosine | 2019 |
AGEs impair Kv channel-mediated vasodilation of coronary arteries by activating the NF-κB signaling pathway in ZDF rats.
Excessive formation of advanced glycation end products (AGEs) impairs voltage-gated potassium (Kv) channels in rat coronary artery smooth muscle cells (CSMCs), resulting in weakened Kv-mediated coronary vasodilation. We hypothesized that induction of the nuclear factor-κB (NF-κB) signaling pathway by AGEs plays a significant role in the regulation of Kv channel-mediated vasodilation in Zucker diabetic fatty (ZDF) rats. Assays of mRNA transcripts, protein expression, and intracellular localization as well as patch-clamp experiments in cultured CSMCs revealed that AGEs significantly induced activation of the NF-κB signaling pathway, reduced Kv1.2/1.5 expression, and inhibited Kv currents. In addition, silencing of the receptor for AGEs (RAGE) or p65 with siRNA and treatment with alagrebrium (ALA) or pyrrolidine dithiocarbamate (PDTC) alleviated the AGE-induced impairment of Kv channels in CSMCs. Compared with Zucker lean (ZL) rats, the amount of AGEs, RAGE protein expression, and NF-κB activity in coronary arteries were higher in ZDF rats; whereas Kv1.2/1.5 expression was significantly lower in ZDF rats. Reduced Kv1.2/1.5 expression in coronary arteries and impaired Kv-mediated coronary relaxation tested by wire myography in ZDF rats were markedly improved by treatment with aminoguanidine (AG), ALA, or PDTC. These effects were accompanied by diminished NF-κB activity, inflammation, and oxidative stress. Taken together, these results indicate that an increased interaction between AGEs and RAGE in diabetic rats leads to impaired Kv channel-mediated coronary vasodilation. Moreover, activation of the NF-κB signaling pathway and a subsequent increase of inflammation and oxidative stress may play an important role in AGE-induced impairment of coronary vasodilation in diabetes. Topics: Animals; Coronary Vessels; Gene Silencing; Glycation End Products, Advanced; Heart Function Tests; Inflammation; Male; Models, Biological; Myocytes, Smooth Muscle; NF-kappa B; Oxidative Stress; Potassium Channels, Voltage-Gated; Protein Binding; Rats, Zucker; Receptor for Advanced Glycation End Products; Signal Transduction; Transcription Factor RelA; Tyrosine; Vasodilation | 2019 |
A longitudinal study of neurotrophic, oxidative, and inflammatory markers in first-onset depression in midlife women.
Prospective studies have shown during the years preceding and following menopause, also known as "menopause transition", that midlife women are at higher risk for developing first-onset major depressive disorder (MDD). The biological factors associated with risk and resilience in this population are, however, largely unknown. Considering the growing body of evidence suggesting that inflammation, oxidative stress, and brain-derived neurotrophic factor (BDNF) are associated with the pathophysiology of MDD, we investigated serum levels of protein carbonyl, lipid peroxidation (thiobarbituric acid reactive substances-TBARS), thiol group content, BDNF, 3-nitrotyrosine, and heat shock protein 70 (HSP70) in a longitudinal cohort of first-onset MDD. One hundred and forty-eight women from the Harvard Study of Moods and Cycles, a prospective study of midlife women monitored throughout the transition to menopause, were studied. Within- and between-groups analyses of these peripheral markers were conducted in 37 women who developed and 111 women that did not develop MDD during the 3-year follow-up period. In women who developed MDD, HSP70 and 3-nitrotyrosine were elevated at baseline, whereas TBARS were elevated 6 months prior to development of MDD, as compared to those who did not develop MDD. Within-group analyses showed that HSP70, 3-nitrotyrosine, and BDNF decreased over time, whereas protein carbonyl was elevated only at 12 months prior to development of MDD. In women who did not develop MDD, HSP70 and thiol decreased over time. The development of MDD in midlife women may be associated with a systemic cascade of pro-oxidative and pro-inflammatory events including increased HSP70, 3-nitrotyrosine, protein carbonyl, and lipid peroxidation and decreased BDNF. Topics: Adult; Brain-Derived Neurotrophic Factor; Cytokines; Depressive Disorder, Major; Female; HSP70 Heat-Shock Proteins; Humans; Inflammation; Lipid Peroxidation; Longitudinal Studies; Middle Aged; Oxidative Stress; Protein Carbamylation; Psychiatric Status Rating Scales; Surveys and Questionnaires; Thiobarbituric Acid Reactive Substances; Tyrosine | 2018 |
Induction of Neuroinflammatory Response and Histopathological Alterations Caused by Quinolinic Acid Administration in the Striatum of Glutaryl-CoA Dehydrogenase Deficient Mice.
Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH) activity. Patients usually present progressive cortical leukodystrophy and commonly develop acute bilateral striatal degeneration mainly during infections that markedly worse their prognosis. A role for quinolinic acid (QA), a key metabolite of the kynurenine pathway, which is activated during inflammatory processes, on the pathogenesis of the acute striatum degeneration occurring in GA I was proposed but so far has not yet been evaluated. Therefore, we investigated whether an acute intrastriatal administration of quinolinic acid (QA) could induce histopathological alterations in the striatum of 30-day-old wild-type (WT) and GCDH knockout (Gcdh-/-) mice. Striatum morphology was evaluated by hematoxylin and eosin, T lymphocyte presence (CD3), and glial activation (GFAP and S100β) by immunohistochemistry and 3-nitrotyrosine (YNO2) by immunofluorescence. QA provoked extensive vacuolation, edema, and especially lymphocyte infiltration in the striatum of Gcdh-/-. QA also enhanced CD3 staining and the number of YNO2 positive cells in Gcdh-/- mice, relatively to WT, indicating T lymphocyte infiltration and nitrosative stress, respectively. QA-treated WT mice also showed an increase of GFAP and S100β staining, which is indicative of reactive astrogliosis, whereas the levels of these astrocytic proteins were not changed in Gcdh-/- QA-injected mice. The present data indicate that QA significantly contributes to the histopathological changes observed in the striatum of Gcdh-/- mice. Topics: Amino Acid Metabolism, Inborn Errors; Animals; Brain Diseases, Metabolic; CD3 Complex; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Glutaryl-CoA Dehydrogenase; Inflammation; Lysine; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidation-Reduction; Quinolinic Acid; S100 Calcium Binding Protein beta Subunit; Statistics, Nonparametric; Time Factors; Tyrosine | 2018 |
Lipopolysaccharide Induces Subacute Cerebral Microhemorrhages with Involvement of Nitric Oxide Synthase in Rats.
Cerebral microhemorrhage (CMH) is a neuropathological term that could be easily found in cerebral amyloid angiopathy, intracerebral hemorrhages, etc. CMHs could be detected clearly in vivo by magnetic resonance imaging (MRI)-susceptibility-weighted imaging or MRI T2* scan. This terminology is now accepted in the area of neuroimaging. CMHs are quite common in elderly patients and are associated with several other neuropsychiatric disorders. The causes of CMHs are complicated, and neuroinflammation is considered as one of the well-accepted mechanical factors. This study investigated whether lipopolysaccharide (LPS)-induced CMHs occur through the regulation of nitric oxide synthase (NOS) isoforms and reveals the exact underlying mechanism of LPS-induced CMHs.. Our work successfully developed a subacute model of CMHs in rats. LPS was intraperitoneally injected into rats at 0, 6, and 24 hours, which induced typical CMH features 7 days after the injection. These could be detected on the brain surface or parenchyma by hematoxylin and eosin staining and MRI.. LPS-treated rats showed significant activation of astrocytes and microglia, as well as loss of pericytes and disruption of blood-brain barrier. Meanwhile, both astrocytes and microglia were positively correlated with CMH numbers. Furthermore, the expressions of NOS isoforms were also examined, and the levels of neuronal NOS and endothelial NOS were found to be elevated.. These results implied that the NOS isoforms might be involved in the subacute model of CMHs in rats induced by LPS. Topics: Animals; Brain; Capillary Permeability; Cerebral Hemorrhage; Disease Models, Animal; Inflammation; Isoenzymes; Lipopolysaccharides; Male; Microglia; Neuroimmunomodulation; Neurons; Nitric Oxide Synthase; Rats, Sprague-Dawley; Tyrosine | 2018 |
2-Pentadecyl-2-Oxazoline Reduces Neuroinflammatory Environment in the MPTP Model of Parkinson Disease.
Current pharmacological management of Parkinson disease (PD) does not provide for disease modification, but addresses only symptomatic features. Here, we explore a new approach to neuroprotection based on the use of 2-pentadecyl-2-oxazoline (PEA-OXA), the oxazoline derivative of the fatty acid amide signaling molecule palmitoylethanolamide (PEA), in an experimental model of PD. Daily oral treatment with PEA-OXA (10 mg/kg) significantly reduced behavioral impairments and neuronal cell degeneration of the dopaminergic tract induced by four intraperitoneal injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on 8-week-old male C57 mice. Moreover, PEA-OXA treatment prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and decreased α-synuclein aggregation in neurons. PEA-OXA treatment also diminished nuclear factor-κB traslocation, cyclooxygenase-2, and inducible nitric oxide synthase expression and through upregulation of the nuclear factor E2-related factor 2 pathway, induced activation of Mn-superoxide dismutase and heme oxygenase-1. Further, PEA-OXA modulated microglia and astrocyte activation and preserved microtubule-associated protein-2 alterations. In conclusion, pharmacological activation of nuclear factor E2-related factor 2 pathways with PEA-OXA may be effective in the future therapy of PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Synuclein; Animals; Astrocytes; Behavior, Animal; Cyclooxygenase 2; Cytokines; Disease Models, Animal; DNA Damage; Dopamine Plasma Membrane Transport Proteins; Inflammation; Mice, Inbred C57BL; Microglia; NF-E2-Related Factor 2; Nitric Oxide Synthase Type II; Nitrosative Stress; Oxazoles; Oxidative Stress; Parkinson Disease; Poly Adenosine Diphosphate Ribose; Transcription Factor RelA; Tyrosine; Tyrosine 3-Monooxygenase | 2018 |
Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation.
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are essential amino acids implicated in glucose metabolism and maintenance of correct brain function. Elevated BCAA levels can promote an inflammatory response in peripheral blood mononuclear cells. However, there are no studies analysing the direct effects of BCAA on endothelial cells (ECs) and its possible modulation of vascular function. In vitro and ex vivo studies were performed in human ECs and aorta from male C57BL/6J mice, respectively. In ECs, BCAA (6 mmol/L) increased eNOS expression, reactive oxygen species production by mitochondria and NADPH oxidases, peroxynitrite formation and nitrotyrosine expression. Moreover, BCAA induced pro-inflammatory responses through the transcription factor NF-κB that resulted in the release of intracellular adhesion molecule-1 and E-selectin conferring endothelial activation and adhesion capacity to inflammatory cells. Pharmacological inhibition of mTORC1 intracellular signalling pathway decreased BCAA-induced pro-oxidant and pro-inflammatory effects in ECs. In isolated murine aorta, BCAA elicited vasoconstrictor responses, particularly in pre-contracted vessels and after NO synthase blockade, and triggered endothelial dysfunction, effects that were inhibited by different antioxidants, further demonstrating the potential of BCAA to induce oxidative stress with functional impact. In summary, we demonstrate that elevated BCAA levels generate inflammation and oxidative stress in ECs, thereby facilitating inflammatory cells adhesion and endothelial dysfunction. This might contribute to the increased cardiovascular risk observed in patients with elevated BCAA blood levels. Topics: Amino Acids, Branched-Chain; Animals; Antioxidants; Aorta; E-Selectin; Endothelial Cells; Glucose; Humans; Inflammation; Intercellular Adhesion Molecule-1; Mechanistic Target of Rapamycin Complex 1; Mice; Mitochondria; NF-kappa B; Oxidative Stress; Peroxynitrous Acid; Reactive Oxygen Species; Signal Transduction; Tyrosine; Vasoconstrictor Agents | 2018 |
IL-33 modulates inflammatory brain injury but exacerbates systemic immunosuppression following ischemic stroke.
Stroke triggers a complex inflammatory process in which the balance between pro- and antiinflammatory mediators is critical for the development of the brain infarct. However, systemic changes may also occur in parallel with brain inflammation. Here we demonstrate that administration of recombinant IL-33, a recently described member of the IL-1 superfamily of cytokines, promotes Th2-type effects following focal ischemic stroke, resulting in increased plasma levels of Th2-type cytokines and fewer proinflammatory (3-nitrotyrosine+F4/80+) microglia/macrophages in the brain. These effects of IL-33 were associated with reduced infarct size, fewer activated microglia and infiltrating cytotoxic (natural killer-like) T cells, and more IL-10-expressing regulatory T cells. Despite these neuroprotective effects, mice treated with IL-33 displayed exacerbated post-stroke lung bacterial infection in association with greater functional deficits and mortality at 24 hours. Supplementary antibiotics (gentamicin and ampicillin) mitigated these systemic effects of IL-33 after stroke. Our findings highlight the complex nature of the inflammatory mechanisms differentially activated in the brain and periphery during the acute phase after ischemic stroke. The data indicate that a Th2-promoting agent can provide neuroprotection without adverse systemic effects when given in combination with antibiotics. Topics: Animals; Brain Injuries; Brain Ischemia; Cytokines; Disease Models, Animal; Inflammation; Interleukin-10; Interleukin-33; Interleukin-4; Lung; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Stroke; Th1 Cells; Th2 Cells; Treatment Outcome; Tyrosine | 2018 |
Attenuation of Remifentanil-Induced Hyperalgesia by Betulinic Acid Associates with Inhibiting Oxidative Stress and Inflammation in Spinal Dorsal Horn.
Remifentanil-induced hyperalgesia (RIH) is known to be associated with oxidative stress and inflammation. Betulinic acid (BA) was reported to reduce visceral pain owing to its anti-oxidative and anti-inflammatory potential. Here, we -explored whether BA can attenuate RIH through inhibiting oxidative stress and inflammation in spinal dorsal horn. Sprague-Dawley rats were randomly divided into 4 groups: Control, Incision, RIH, and RIH pre-treated with BA. After pretreated with BA (25 mg/kg, i.g.) for 7 days, rats were subcutaneously infused with remifentanil (40 μg/kg) for 30 min during right plantar incision surgery to induce RIH. The paw withdrawal mechanical threshold (PWMT), paw withdrawal thermal latency (PWTL), spinal oxidative stress and inflammatory mediators were determined. Intraoperative remifentanil infusion induced postoperative hyperalgesia, as evidenced by the significant decrease in PWMT and PWTL (p < 0.01), and the significant increase in oxidative stress and inflammation evidenced by up-regulations of malondialdehyde, 3-nitrotyrosine, interleukin-1β and tumour necrosis factor-α (p < 0.01) in spinal dorsal horn and matrix metalloproteinase-9 (MMP-9) activity (p < 0.01) in dorsal root ganglion, as well as a decrease in manganese superoxide -dismutase activity (p < 0.01) compared with control and -incision groups. All these results mentioned above were markedly reversed by pre-treatment with BA (p < 0.01) compared with RIH group. These findings demonstrated that BA can effectively attenuate RIH, which associates with potentially inhibiting oxidative stress and subsequently down-regulating MMP-9-related pro-inflammatory cyokines in spinal dorsal horn. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Betulinic Acid; Drug Interactions; Ganglia, Spinal; Hyperalgesia; Inflammation; Interleukin-1beta; Male; Oxidative Stress; Pain, Postoperative; Pentacyclic Triterpenes; Random Allocation; Rats; Rats, Sprague-Dawley; Remifentanil; Spinal Cord Dorsal Horn; Superoxide Dismutase; Triterpenes; Tumor Necrosis Factor-alpha; Tyrosine | 2018 |
Nitric Oxide Is Involved in Activation of Toll-Like Receptor 4 Signaling through Tyrosine Nitration of Src Homology Protein Tyrosine Phosphatase 2 in Murine Dextran Sulfate-Induced Colitis.
Ulcerative colitis is characterized by colonic mucosal bleeding and ulceration, often with repeated active and remission stages. One factor in ulcerative colitis development is increased susceptibility to commensal bacteria and lipopolysaccharide (LPS). LPS activates macrophages to release nitric oxide (NO) through Toll-like receptor 4 (TLR4) signaling. However, whether NO is beneficial or detrimental to colitis remains controversial. In this study, we investigated whether NO enhances the development of colitis in mice treated with dextran sulfate sodium (DSS) and inflammation in cells treated with low-dose LPS. An NO donor, NOC18, induced colitis and increased CD14 protein and nitrotyrosine levels in colonic macrophages from mice treated with DSS for 7 d (molecular weight: 5000). In the mouse peritoneal macrophage cell line RAW264.7 stimulated with 3 ng/mL LPS, NO activated the CD14-TLR4-nuclear factor kappa B (NF-κB) axis. Low-dose LPS stimulation did not change the levels of signal transducer and activator of transcription (STAT) 3 phosphorylation, CD14, inducible NO synthase, interleukin (IL)-6, or NF-κB. In addition, low-dose LPS increased phosphorylation of src homology protein tyrosine phosphatase 2 (SHP2), a negative regulator of STAT3 phosphorylation. However, NO decreased SHP2 phosphorylation and significantly activated the downstream signaling molecules. NO increased SHP2 nitration in LPS-stimulated RAW264.7 cells and DSS-treated mice. These results indicate that SHP2 nitration in macrophages might be involved in activation of the CD14-TLR4-NF-κB axis through STAT3 signaling in mice with DSS-induced colitis. Topics: Animals; Colitis, Ulcerative; Dextran Sulfate; Disease Models, Animal; Inflammation; Intestinal Mucosa; Lipopolysaccharides; Mice; Nitric Oxide; Nitric Oxide Donors; Phosphorylation; RAW 264.7 Cells; SH2 Domain-Containing Protein Tyrosine Phosphatases; Signal Transduction; Toll-Like Receptor 4; Tyrosine | 2018 |
Genipin attenuates cisplatin-induced nephrotoxicity by counteracting oxidative stress, inflammation, and apoptosis.
Cisplatin (CP) is a potent and widely used chemotherapeutic agent. However, the clinical benefits of CP are compromised because it elicits nephrotoxicity and ototoxicity. In this study, we investigated the nephroprotective effects of the phytochemical genipin (GP) isolated from the gardenia (Gardenia jasminoides) fruit, using a murine model of CP-induced nephropathy. GP pretreatment attenuated the CP-induced renal tissue injury by diminishing the serum blood urea nitrogen, creatinine, and cystatin C levels, as well as those of kidney injury molecule-1. In addition, GP attenuated the CP-induced oxidative/nitrative stress by suppressing the activation of NADPH oxidase, augmenting the endogenous antioxidant defense system, and diminishing the accumulation of 4-hydroxynonenal and 3-nitrotyrosine in renal tissues. Furthermore, reduced levels of proinflammatory cytokines such as tumor necrosis factor-alpha and interleukin-1 beta indicated that CP-induced renal inflammation was mitigated upon the treatment with GP. GP also attenuated the CP-induced activation of mitogen-activated protein kinases, excessive activities of caspase-3/7 and poly(ADP-ribose) polymerase, DNA fragmentation, and apoptosis. When administered 12h after the onset of kidney injury, GP showed a therapeutic effect by ameliorating CP-induced nephrotoxicity. Moreover, GP synergistically enhanced the CP-induced cell death of T24 human bladder cancer cells. Collectively, our data indicate that GP attenuated the CP-induced renal tissue injury by abrogating oxidative/nitrative stress and inflammation and by blocking cell death pathways, thereby improving the renal function. Thus, our results suggest that the use of GP may be a promising new protective strategy against cisplatin-induced nephrotoxicity. Topics: Aldehydes; Animals; Antioxidants; Apoptosis; Blood Urea Nitrogen; Caspase 3; Caspase 7; Cell Line, Tumor; Cisplatin; Creatinine; Cystatin C; Cytokines; Hepatitis A Virus Cellular Receptor 1; Humans; Inflammation; Iridoids; Kidney; Kidney Diseases; Male; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinases; Oxidative Stress; Poly(ADP-ribose) Polymerases; Tyrosine | 2017 |
The Anti-Inflammatory and Antioxidant Potential of Pistachios (Pistacia vera L.) In Vitro and In Vivo.
Several reports have demonstrated the effectiveness of pistachio against oxidative stress and inflammation. In this study, we investigate if polyphenols extracts from natural raw shelled pistachios (NP) or roasted salted pistachio (RP) kernels have anti-inflammatory and antioxidant properties at lower doses than reported previously, in both in vitro and in vivo models. The monocyte/macrophage cell line J774 was used to assess the extent of protection by NP and RP pistachios against lipopolysaccharide (LPS)-induced inflammation. Moreover, antioxidant activity of NP and RP was assessed in an in vivo model of paw edema in rats induced by carrageenan (CAR) injection in the paw. Results from the in vitro study demonstrated that pre-treatment with NP (0.01, 0.1 and 0.5 mg/mL) and RP (0.01 and 0.1 mg/mL) exerted a significant protection against LPS induced inflammation. Western blot analysis showed NP reduced the degradation of IκB-α, although not significantly, whereas both NP and RP decreased the TNF-α and IL-1β production in a dose-dependent way. A significant reduction of CAR-induced histological paw damage, neutrophil infiltration and nitrotyrosine formation was observed in the rats treated with NP. These data demonstrated that, at lower doses, polyphenols present in pistachios possess antioxidant and anti-inflammatory properties. This may contribute toward a better understanding of the beneficial health effects associated with consumption of pistachios. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Carrageenan; Cell Line; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Inflammation; Interleukin-1beta; Lipopolysaccharides; Macrophages; Male; Mice; Neutrophil Infiltration; NF-KappaB Inhibitor alpha; Nuts; Oxidative Stress; Phytotherapy; Pistacia; Plant Extracts; Plants, Medicinal; Rats, Sprague-Dawley; Time Factors; Tumor Necrosis Factor-alpha; Tyrosine | 2017 |
Heat Shock Protein 27 Response to Wrestling Training in Relation to the Muscle Damage and Inflammation.
Zembron-Lacny, A, Ziemann, E, Zurek, P, and Hübner-Wozniak, E. Heat shock protein 27 response to wrestling training in relation to the muscle damage and inflammation. J Strength Cond Res 31(5): 1221-1228, 2017-One of the unique features of an exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise elevates catabolic proinflammatory cytokines. On the other hand, exercise stimulates anabolic components such as heat shock proteins (HSPs), which protect against stressors. Therefore, the study was designed to evaluate the blood level of HSP27 and its relationship with muscle damage and inflammatory mediators in elite Greco-Roman wrestlers during training periods differed in type and intensity exercise. Ten male wrestlers (21.2 ± 2.1 years) were observed during the conditioning camps at preseason (January), at the beginning of tournament season (April), and during tournament season (June). Twelve healthy and untrained men (19.2 ± 0.4 years) were considered a reference group. The serum levels of inflammatory mediators and HSP27 in wrestlers were significantly different from nonathletes. In wrestlers, reactive oxygen and nitrogen species H2O2, NO, and 3-nitro, cytokines interleukin-1β and tumor necrosis factor α, and also HSP27 reached the highest levels at preseason (January) or tournament season (June) when the special training predominated (>30% training load) over directed training (approximately 10% training load). Creatine kinase activity also demonstrated the highest level during the same training periods (January 2,315 ± 806 IU·L; June 3,139 ± 975 IU·L). The regression analysis revealed the relationship of HSP27 level with muscle damage (rs = -0.613, p < 0.001), and also with inflammatory mediators. The results of this study show that wrestling training modulates HSP27 level, which is significantly related with skeletal muscle damage and inflammatory response, and suggest that measure of HSP27 level can be useful diagnostic tool in biochemical assessment of athletes to increase their performance. Topics: Adolescent; Creatine Kinase; HSP27 Heat-Shock Proteins; Humans; Hydrogen Peroxide; Inflammation; Interleukin-1beta; Male; Muscle, Skeletal; Nitric Oxide; Physical Conditioning, Human; Tumor Necrosis Factor-alpha; Tyrosine; Wrestling; Young Adult | 2017 |
Antidepressant-like effect of pramipexole in an inflammatory model of depression.
Pramipexole (PPX), a dopamine D2/3 receptor preferring agonist, is currently in use for the treatment of Parkinson's disease symptoms and restless legs syndrome. Recently, anti-inflammatory properties of PPX have been shown in an autoimmune model of multiple sclerosis, and case reports indicate PPX ameliorates depressive symptoms. Since peripheral inflammation is known to induce depression-like behavior in rodents, we assessed the potential antidepressant effect of PPX in an inflammatory model of depression induced by LPS. Repeated (daily for 7days, 1mg/kg, i.p.), but not acute (1h before LPS) treatment with PPX abolished the depression-like behavior induced by LPS (0.1mg/kg, i.p.) in the forced swim test, and the anhedonic behavior in the splash test. Interestingly, PPX per se decreased interleukin 1β levels and reversed LPS-induced increase in its content in mice hippocampus⋅ Repeated PPX treatment also prevented the increase in hippocampal levels of the 3-nitrotyrosine protein adducts induced by LPS. Haloperidol (0.2mg/kg, i.p.) and sulpiride (50mg/kg, i.p.) were unable to prevent the antidepressant-like effect of PPX in LPS-treated mice. Altogether, these results suggest that the observed antidepressant-like effect of PPX in LPS-treated mice may be dependent on its anti-inflammatory properties and may not be related to dopamine D2 receptor activation. Topics: Animals; Benzothiazoles; Brain; Depression; Disease Models, Animal; Dopamine Agonists; Female; Glial Fibrillary Acidic Protein; Illness Behavior; Inflammation; Interleukin-1beta; Interleukin-6; Lipopolysaccharides; Locomotion; Malondialdehyde; Mice; Pramipexole; Swimming; Time Factors; Tyrosine | 2017 |
Circulating bacterial lipopolysaccharide-induced inflammation reduces flow in brain-irrigating arteries independently from cerebrovascular prostaglandin production.
Brain dysfunction is a frequent complication of the systemic inflammatory response to bacterial infection or sepsis. In the present work, the effects of intravenous bacterial lipopolysaccharide (LPS) administration on cerebral arterial blood flow were assessed with time-of-flight (TOF)-based magnetic resonance angiography (MRA) in mice. Cerebral expression of the transcription factors nuclear factor-kappaB (NF-κB) and c-Fos and that of enzymes synthesizing vasoactive mediators, such as prostaglandins and nitric oxide, known to be increased under inflammatory conditions, were studied in the same animals. Time-resolved TOF MRA revealed no differences in blood flow in the internal carotids upstream of the circle of Willis, but indicated lower flow in its lateral parts as well as in the middle and anterior cerebral arteries after intravenous LPS injection as compared to saline administration. Although LPS did not increase c-Fos expression in ventral forebrain structures of these animals, it did induce NF-κB in meningeal blood vessels. LPS also increased cerebral expression of cyclooxygenase-2 and prostaglandin E synthase mRNAs, but de novo expression occurred in veins rather than in arteries. In conclusion, our work indicates that LPS-induced systemic inflammation does not necessarily affect filling of the circle of the Willis from the periphery, but that circulating LPS alters outflow from the circle of Willis to the middle and anterior cerebral arteries. These modifications in arterial flow were not related to increased cerebral synthesis of prostaglandins, but may instead be the consequence of the action of circulating prostaglandins and other vasoactive mediators on brain-irrigating arteries during systemic inflammation. Topics: Animals; Cerebral Arteries; Cerebral Cortex; Cyclooxygenase 2; Inflammation; Lipopolysaccharides; Magnetic Resonance Angiography; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Prostaglandins; Proto-Oncogene Proteins c-fos; Tyrosine | 2017 |
The active metabolite of leflunomide, A77 1726, attenuates inflammatory arthritis in mice with spontaneous arthritis via induction of heme oxygenase-1.
Leflunomide is a low-molecular-weight compound that is widely used in the treatment of rheumatoid arthritis. Although leflunomide is thought to act through the inhibition of the de novo pyrimidine synthesis, the molecular mechanism of the drug remains largely unknown. We investigated the antiarthritis effects and mechanisms of action of the active metabolite of leflunomide, A77 1726, in interleukin-1 receptor antagonist-knockout (IL-1Ra-KO) mice.. 14- to 15-week-old male IL-1Ra-KO mice were treated with 10 or 30 mg/kg A77 1726 via intraperitoneal injection three times per week for 6 weeks. The effects of A77 1726 on arthritis severities were assessed by clinical scoring and histological analysis. The serum concentrations of IL-1β, tumor necrosis factor-α (TNF-α), and malondialdehyde were measured by enzyme-linked immunosorbent assay. Histologic analysis of the joints was performed using Safranin O, and immunohistochemical staining. The frequencies of interleukin-17-producing CD4. A77 1726 treatment induced heme oxygenase-1 (HO-1) in Jurkat cells and primary mouse T cells. Interestingly, A77 1726 inhibited Th17 cell differentiation. In vivo, A77 1726 reduced the clinical arthritis severity of histological inflammation and cartilage destruction. The joints isolated from A77 1726-treated mice showed decreased expression of inducible nitric oxide synthase, nitrotyrosine, TNF-α, and IL-1β. The serum levels of TNF-α, IL-1β, and malondialdehyde were also decreased in A77 1726-treated mice. Whereas the number of Th17 cells in spleens was decreased in A77 1726-treated arthritis mice, a significant increase in the number of Treg cells in spleens was observed. Interestingly, HO-1 expression was significantly higher in splenic CD4. The inhibitory effects of A77 1726 on joint inflammation and oxidative stress in autoimmune arthritis may be associated with HO-1 induction in CD4 Topics: Aniline Compounds; Animals; Anti-Inflammatory Agents; Arthritis, Experimental; Arthritis, Rheumatoid; Cell Differentiation; Crotonates; Forkhead Transcription Factors; Heme Oxygenase-1; Humans; Hydroxybutyrates; Inflammation; Isoxazoles; Jurkat Cells; Leflunomide; Mice, Inbred BALB C; Mice, Inbred C57BL; NF-E2-Related Factor 2; Nitric Oxide Synthase Type II; Nitriles; Oxidative Stress; Signal Transduction; Spleen; Th17 Cells; Toluidines; Tyrosine | 2017 |
Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats.
Topics: 6-Ketoprostaglandin F1 alpha; Animals; Arterial Pressure; Cyclooxygenase 2; Epoprostenol; Gene Expression Regulation, Enzymologic; Heart Rate; Hypotension; I-kappa B Proteins; Inflammation; Lipopolysaccharides; Male; Nitric Oxide; Nitric Oxide Synthase Type II; Peroxidase; Peroxynitrous Acid; Rats; Rats, Wistar; Ribosomal Protein S6; Signal Transduction; TOR Serine-Threonine Kinases; Transcription Factor RelA; Tumor Necrosis Factor-alpha; Tyrosine | 2017 |
Intact FGF23 and α-Klotho during acute inflammation/sepsis in CKD patients.
High FGF23 and low α-Klotho levels associate with systemic inflammation and reduced nitric oxide (NO) bioavailability, but the dynamics of this relationship in patients with CKD has not been investigated.. We sequentially measured serum intact FGF23 and carboxyl-terminal (iFGF23, cFGF23), the iFGF23/cFGF23 ratio, αKlotho, biomarkers of inflammation (hs-CRP, IL-6 and TNF-α) and sepsis (procalcitonin), nitrotyrosine (reflecting NO synthesis and oxidative stress), serum iron and ferritin and CKD-MBD biomarkers, PTH, 25(OH)VD, 1,25(OH)2 VD at peak of intercurrent sepsis and after complete resolution in a series of 17 patients with CKD.. At peak infection, biomarkers of inflammation/sepsis, ferritin and nitrotyrosine were all very high (all P < 0·01) and declined towards the normal range thereafter (P < 0·01). iFGF23 was 191 ± 10 pg/ml (geometric mean, SD) and doubled to 371 ± 8 pg/ml (P = 0·003) after the resolution of infection, while cFGF23 did not change (246 ± 5 pg/mL vs. 248 ± 5 pg/mL, P = 0·50). As a consequence, the iFGF23/cFGF23 ratio, an indicator of the proteolytic cleavage of the FGF23 molecule, was 0·78 ± 3·87 at peak infection and increased to 1·49 ± 3·00 after resolution of infection (P < 0·001). In contrast, serum α-Klotho levels were upregulated at peak infection (peak infection: 526 ± 4 pg/ml, postinfection: 447 ± 4 pg/ml, P = 0·001). The eGFR, PTH and vitamin D did not change significantly throughout.. Acute inflammation/sepsis suppresses the active form of FGF23 and activates α-Klotho, the latter effect being likely attributable to enhance proteolysis of FGF23 molecule. iFGF23 downregulation and α-Klotho upregulation during acute sepsis may participate into the counter-regulatory response to severe inflammation in CKD patients with sepsis. Topics: Adult; Aged; Biomarkers; C-Reactive Protein; Calcitonin; Calcitriol; Female; Ferritins; Fibroblast Growth Factor-23; Fibroblast Growth Factors; Glucuronidase; Humans; Inflammation; Interleukin-6; Iron; Klotho Proteins; Male; Middle Aged; Oxidative Stress; Parathyroid Hormone; Prospective Studies; Renal Insufficiency, Chronic; Sepsis; Tumor Necrosis Factor-alpha; Tyrosine; Vitamin D | 2016 |
TLR-7 agonist attenuates airway reactivity and inflammation through Nrf2-mediated antioxidant protection in a murine model of allergic asthma.
Toll-like receptors (TLRs) through innate immune system recognize pathogen associated molecular patterns and play an important role in host defense against bacteria, fungi and viruses. TLR-7 is responsible for sensing single stranded nucleic acids of viruses but its activation has been shown to be protective in mouse models of asthma. The NADPH oxidase (NOX) enzymes family mainly produces reactive oxygen species (ROS) in the lung and is involved in regulation of airway inflammation in response to TLRs activation. However, NOX-4 mediated signaling in response to TLR-7 activation in a mouse model of allergic asthma has not been explored previously. Therefore, this study investigated the role TLR-7 activation and downstream oxidant-antioxidant signaling in a murine model of asthma. Mice were sensitized with ovalbumin (OVA) intraperitoneally and treated with TLR-7 agonist, resiquimod (RSQ) intranasally before each OVA challenge from days 14 to 16. Mice were then assessed for airway reactivity, inflammation, and NOX-4 and nuclear factor E2-related factor 2 (Nrf2) related signaling [inducible nitric oxide synthase (iNOS), nitrotyrosine, lipid peroxides and copper/zinc superoxide dismutase (Cu/Zn SOD)]. Treatment with RSQ reduced allergen induced airway reactivity and inflammation. This was paralleled by a decrease in ROS which was due to induction of Nrf2 and Cu/Zn SOD in RSQ treated group. Inhibition of MyD88 reversed RSQ-mediated protective effects on airway reactivity/inflammation due to reduction in Nrf2 signaling. SOD inhibition produced effects similar to MyD88 inhibition. The current study suggests that TLR-7 agonist is beneficial and may be developed into a therapeutic option in allergic asthma. Topics: Animals; Antioxidants; Asthma; Bronchoalveolar Lavage; Imidazoles; Immunoblotting; Inflammation; Lipid Peroxides; Male; Membrane Glycoproteins; Mice; Mice, Inbred BALB C; NF-E2-Related Factor 2; Reactive Oxygen Species; Real-Time Polymerase Chain Reaction; Superoxide Dismutase; Toll-Like Receptor 7; Tyrosine | 2016 |
PARP inhibition attenuates neuroinflammation and oxidative stress in chronic constriction injury induced peripheral neuropathy.
Peripheral nerve degeneration after nerve injury is accompanied with oxidative stress that may activate poly ADP-ribose polymerase (PARP, DNA repair enzyme). PARP overactivation amplifies the neuronal damage either due to energy crisis or through inflammatory process by facilitating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Hence investigated the role of PARP inhibitors, 3-Aminobenzamide (3-AB) and 1,5-isoquinolinediol (ISO) in the attenuation of chronic constriction injury (CCI) induced peripheral neuropathy in rats.. 3-AB and ISO (at doses 30 and 3mg/kg i.p., respectively) were tested in rats subjected to standard tests for evaluating hyperalgesia and allodynia. Sciatic functional index (SFI) was assessed by performing walking track analysis. Oxidative stress and inflammation induced biochemical alterations were estimated after 14 days in sciatic nerve and lumbar spinal cord. Molecular changes were explored by immunohistochemistry and DNA fragmentation by TUNEL assay.. Treatment significantly improved sensorimotor responses (p<0.001), SFI (p<0.001) and foot posture. PARP inhibition significantly (p<0.01 and p<0.001) reduced the elevated levels of nitrite, inflammatory markers and also normalized the depleted NAD(total) levels. The protein expression of poly (ADP-ribose) (PAR), NF-κB, cyclooxygenase-2 (COX-2) and nitrotyrosine were significantly (p<0.01 and p<0.001) decreased in both sciatic nerve and lumbar spinal cord, evident through immunohistochemistry.. Present study outcomes fortify the pathological role of PARP overactivation in CCI induced neuropathy and PARP inhibition ameliorated oxidative stress and neuroinflammation associated with CCI induced nerve injury. Therefore, the current study suggests the PARP inhibitors can further be evaluated for designing futuristic strategies for the management of trauma induced neuropathy. Topics: Animals; Benzamides; Constriction, Pathologic; Cyclooxygenase 2; Hyperalgesia; Inflammation; Male; NAD; Neuritis; Neuroprotective Agents; Oxidative Stress; Pain Measurement; Peripheral Nervous System Diseases; Poly(ADP-ribose) Polymerase Inhibitors; Rats; Rats, Sprague-Dawley; Sensation; Tyrosine; Walking | 2016 |
Intravenous iron sucrose reverses anemia-induced cardiac remodeling, prevents myocardial fibrosis, and improves cardiac function by attenuating oxidative/nitrosative stress and inflammation.
According to recent clinical trial data, correction of iron deficiency with intravenous (i.v.) iron has favorable outcomes on cardiac function. We evaluated whether i.v. iron treatment of anemic rats has favorable effect on the left ventricular (LV) performance and remodeling and the role of oxidative/nitrosative stress and inflammation in the process.. After weaning, Sprague-Dawley rats were fed low iron diet for 16weeks, after which the treatment group received five weekly doses of i.v. iron sucrose (10mg Fe/kg body weight). Echocardiography of LV was performed and hematology parameters were assessed before treatment (baseline, day 0) and at the end of the study (day 29). On day 29, rats were sacrificed and extracellular expansion and fibrosis in LV and interventricular septum were evaluated together with oxidative/nitrosative stress, pro-inflammatory, and repair process markers.. Although iron sucrose treatment did not fully correct the anemia, it reversed anemia-induced cardiac remodeling as indicated by echocardiographic and tissue Doppler parameters. Treatment with iron sucrose also prevented anemia-induced myocardial fibrosis as indicated by extracellular expansion and fibrosis markers. Anemia-induced inflammation was prevented by iron sucrose as indicated by the levels of proinflammatory (TNF-α, NF-κB65) and repair process markers (HSP27, HSP70). In addition, iron sucrose treatment significantly reduced (p<0.01) anemia-induced oxidative and nitrosative stress.. Intravenous iron sucrose treatment reversed anemia-induced remodeling of LV, prevented myocardial fibrosis, and improved cardiac function by attenuating oxidative/nitrosative stress and inflammation in the heart. Topics: Anemia; Animals; Cardiotonic Agents; Ferric Compounds; Ferric Oxide, Saccharated; Fibrosis; Glucaric Acid; Inflammation; Infusions, Intravenous; Male; Myocardium; Oxidative Stress; Rats; Rats, Sprague-Dawley; Tyrosine; Ventricular Remodeling | 2016 |
A new co-micronized composite containing palmitoylethanolamide and polydatin shows superior oral efficacy compared to their association in a rat paw model of carrageenan-induced inflammation.
Palmitoylethanolamide (PEA), a special food for medical purposes, has anti-inflammatory and neuroprotective effects. Nevertheless, PEA lacks direct ability to prevent free radical formation. Polydatin (PLD), a natural precursor of resveratrol, has antioxidant activity. The combination of PEA and PLD could have beneficial effects on oxidative stress induced by inflammatory processes. In the present study, we compared the effects of micronized PEA (PEA-m) and PLD association (PEA-m+PLD) with a new co-micronized composite containing PEA and PLD (m(PEA/PLD)) in the rat paw model of carrageenan (CAR)-induced acute inflammation. Intraplantar injection of CAR led to a time-dependent development of peripheral inflammation, in terms of paw edema, cytokine release in paw exudates, nitrotyrosine formation, inducible nitric oxide synthase and cyclooxygenase-2 expression. m(PEA/PLD) reduced all measured parameters. Thermal hyperalgesia and mechanical allodynia were also markedly reduced. At the spinal cord level, manganese superoxide dismutase (MnSOD) was found to be nitrated and subsequently deactivated. Further, m(PEA/PLD) treatment increased spinal MnSOD expression, prevented IkB-α degradation and nuclear factor-κB translocation, suggesting a possible role on central sensitization. m(PEA/PLD) showed more robust anti-inflammatory and anti-hyperalgesic effects compared to the simple association of PEA-m and PLD. This composite formulation approach opens a new therapeutic strategy for the development of novel non-narcotic anti-hyperalgesic agents. Topics: Active Transport, Cell Nucleus; Administration, Oral; Amides; Animals; Carrageenan; Cell Line, Tumor; Cell Nucleus; Cyclooxygenase 2; Cytokines; Disease Models, Animal; Drug Compounding; Drug Interactions; Edema; Ethanolamines; Gene Expression Regulation, Enzymologic; Glucosides; Hyperalgesia; Inflammation; Male; Neutrophil Infiltration; NF-KappaB Inhibitor alpha; Nitric Oxide Synthase Type II; Palmitic Acids; Proteolysis; Rats; Rats, Sprague-Dawley; Stilbenes; Superoxide Dismutase; Transcription Factor RelA; Tyrosine | 2016 |
Peroxynitrite-induced structural perturbations in human IgG: A physicochemical study.
IgG is an important defence protein. To exhibit optimum function the molecule must maintain its native structure. Peroxynitrite is a potent oxidizing and nitrating agent produced in vivo under pathophysiological conditions. It can oxidize and/or nitrate various amino acids causing changes in the structure and function of proteins. Such proteins may be involved in the pathogenesis of many inflammatory diseases, including rheumatoid arthritis. In the present work, peroxynitrite-induced structural changes in IgG have been studied by UV-visible, fluorescence, CD, FT-IR, DLS spectroscopy and DSC as well as by SDS-PAGE. Peroxynitrite-modified IgG exhibited hyperchromicity at 280 nm, quenching of tryptophan fluorescence, increase in ANS fluorescence, loss of β-sheet, shift in the positions of amide I and amide II bands, appearance of new peak in FT-IR, attachment of nitro residues and increase in melting temperature, compared to native IgG. Furthermore, peroxynitrite-modified IgG exhibited an additional peak at 420 nm, quenching in tyrosine fluorescence and enhancement in dityrosine fluorescence compared to native IgG. Generation of nitrotyrosine, dityrosine and nitrotryptophan was also observed in peroxynitrite-modified IgG. Gross structural changes in IgG caused by peroxynitrite and observed in vitro may favour autoantibodies induction in vivo under similar conditions. Topics: Arthritis, Rheumatoid; Calorimetry, Differential Scanning; Circular Dichroism; Dose-Response Relationship, Drug; Electrophoresis, Polyacrylamide Gel; Humans; Immunoglobulin G; Inflammation; Light; Microscopy, Fluorescence; Oxygen; Peroxynitrous Acid; Protein Structure, Secondary; Scattering, Radiation; Sepharose; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Temperature; Tryptophan; Tyrosine | 2016 |
Association of Plasma DPP4 Activity With Mild Cognitive Impairment in Elderly Patients With Type 2 Diabetes: Results From the GDMD Study in China.
Hyperglycemia, inflammation, and oxidative stress are thought to be involved in the pathogenesis of cognitive decline. Dipeptidyl peptidase-4 (DPP4) is a newly identified adipokine related to these risk factors. Hence, we aimed to investigate the association between plasma DPP4 activities and mild cognitive impairment (MCI) in elderly patients with type 2 diabetes.. We evaluated plasma DPP4 activity, inflammatory markers, and oxidative stress parameters in a cross-sectional sample of 1,160 patients with type 2 diabetes aged 60 years or older in China. MCI was diagnosed based on criteria established by the National Institute on Aging-Alzheimer's Association workgroups. Patients in the highest quartile of DPP4 activity had higher HbA1c, interleukin 6 (IL-6), CRP, nitrotyrosine, 8-iso-PGF2a, and lower Montreal Cognitive Assessment (MoCA) scores compared with subjects in the lowest quartile (P < 0.001). In the highest DPP4 quartile, MCI risk was higher (odds ratio 3.49; 95% CI 1.97-4.57) than in the lowest quartile after adjustment for potential confounders. The risk for MCI increased more with higher levels of DPP4 activity, IL-6, CRP, nitrotyrosine, and 8-iso-PGF2a (P < 0.05), but not with higher levels of HbA1c.. This study shows that increased DPP4 activities are independently associated with MCI in elderly patients with type 2 diabetes. The mechanisms might be partly explained by the effect of DPP4 on inflammation and oxidative stress. These observations raise further interest in DPP4 activity for its potential effect on these MCI-related risk factors as a biological marker or even a possible therapeutic target for MCI. Topics: Aged; Biomarkers; C-Reactive Protein; China; Cognitive Dysfunction; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Dinoprost; Dipeptidyl Peptidase 4; Female; Glycated Hemoglobin; Humans; Inflammation; Interleukin-6; Male; Middle Aged; Odds Ratio; Oxidative Stress; Risk Factors; Tyrosine | 2016 |
Thrombus Aspirated from Patients with ST-Elevation Myocardial Infarction: Association between 3-Nitrotyrosine and Inflammatory Markers - Insights from ARTERIA Study.
Recent studies have demonstrated that inflammatory cells are a component that plays a role in thrombus formation in ST-elevation myocardial infarction (STEMI). 3-nitrotyrosine (3-NO2-Tyr), a specific marker for protein modification by nitric oxide-derived oxidants, is increased in human atherosclerotic lesions. The purpose of this study was to determine the possible association of inflammatory markers of coronary thrombi with nitroxidative stress. Intracoronary thrombus (n=51) and blood from the systemic circulation were obtained by thromboaspiration in 138 consecutive STEMI patients presenting for primary percutaneous coronary intervention (PCI). Each blood and intracoronary thrombus were measured simultaneously the following biomarkers: C-reactive protein (CRP), 3-NO2-Tyr, soluble CD 40 ligand (sCD40L), vascular cellular adhesion molecule-1 (VCAM-1) and haemoglobin content (only in coronary thrombus). Time delay in minutes from symptom onset to PCI was 244 ± 324. Serum CRP was positively correlated to CRP content in the thrombus (r= 0.395; p = 0.02) and serum sCD40L was negatively correlated to sCD40L in the thrombus (r= -0.394; p = 0.02). Patients were divided into tertiles according to thrombi 3-NO2-Tyr concentration: 1(st)tertile (<0.146ng/mg), 2(nd)tertile (0.146-0.485ng/mg) and 3(rd)tertile (>0.485ng/mg). Thus, thrombus in the highest tertile had significantly higher levels of CRP (p=0.002), VCAM-1 (p=0.003) and haemoglobin (p=0.002). In conclusion, the present study demonstrated that coronary thrombi with higher levels of 3-NO2-Tyr content often contain more inflammatory markers which could have a direct impact on the efficacy of drugs or devices used for coronary reperfusion. Topics: Aged; Biomarkers; C-Reactive Protein; CD40 Ligand; Coronary Thrombosis; Enzyme-Linked Immunosorbent Assay; Female; Hemoglobins; Humans; Inflammation; Male; Middle Aged; Myocardial Infarction; Oxidative Stress; Percutaneous Coronary Intervention; Tyrosine; Vascular Cell Adhesion Molecule-1 | 2016 |
Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells.
Excess catecholamine levels are suggested to be cardiotoxic and to underlie stress-induced heart failure. The cardiotoxic effects of norepinephrine and epinephrine are well recognized. However, although cardiac and circulating dopamine levels are also increased in stress cardiomyopathy patients, knowledge regarding putative toxic effects of excess dopamine levels on cardiomyocytes is scarce. We now studied the effects of elevated dopamine levels in H9c2 cardiomyoblasts. H9c2 cells were cultured and treated with dopamine (200 μM) for 6, 24, and 48 h. Subsequently, the effects on lipid accumulation, cell viability, flippase activity, reactive oxygen species (ROS) production, subcellular NADPH oxidase (NOX) protein expression, and ATP/ADP and GTP/GDP levels were analyzed. Dopamine did not result in cytotoxic effects after 6 h. However, after 24 and 48 h dopamine treatment induced a significant increase in lipid accumulation, nitrotyrosine levels, indicative of ROS production, and cell death. In addition, dopamine significantly reduced flippase activity and ATP/GTP levels, coinciding with phosphatidylserine exposure on the outer plasma membrane. Furthermore, dopamine induced a transient increase in cytoplasmic and (peri)nucleus NOX1 and NOX4 expression after 24 h that subsided after 48 h. Moreover, while dopamine induced a similar transient increase in cytoplasmic NOX2 and p47 Topics: Adenosine Diphosphate; Adenosine Triphosphate; Animals; Caspase 3; Cell Line; Cell Membrane; Cell Survival; Dopamine; Dopamine Agents; Flow Cytometry; Guanosine Diphosphate; Guanosine Triphosphate; Hydrogen-Ion Concentration; Inflammation; Lipid Metabolism; Microscopy, Electron; Microscopy, Fluorescence; Myoblasts, Cardiac; NADH, NADPH Oxidoreductases; NADPH Oxidase 1; NADPH Oxidase 4; NADPH Oxidases; Nuclear Proteins; Oxidative Stress; Peroxidase; Rats; Reactive Oxygen Species; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins; Tyrosine | 2016 |
Left ventricular pressure-volume measurements and myocardial gene expression profile in type 2 diabetic Goto-Kakizaki rats.
The Goto-Kakizaki (GK) rat, a non-obese model of type 2 diabetes mellitus (T2DM), was generated by the selective inbreeding of glucose-intolerant Wistar rats. This is a convenient model for studying diabetes-induced cardiomyopathy independently from the effects of the metabolic syndrome. We investigated the myocardial functional and structural changes and underlying molecular pathomechanisms of short-term and mild T2DM. The presence of DM was confirmed by an impaired oral glucose tolerance in the GK rats compared with the age-matched nondiabetic Wistar rats. Data from cardiac catheterization showed that in GK rats, although the systolic indexes were not altered, the diastolic stiffness was increased compared with nondiabetics (end-diastolic-pressure-volume-relationship: 0.12 ± 0.04 vs. 0.05 ± 0.01 mmHg/μl, P < 0.05). Additionally, DM was associated with left-ventricular hypertrophy and histological evidence of increased myocardial fibrosis. The plasma pro-B-type natriuretic peptide, the cardiac troponin-T, glucose, and the urinary glucose concentrations were significantly higher in GK rats. Among the 125 genes surveyed using PCR arrays, DM significantly altered the expression of five genes [upregulation of natriuretic peptide precursor-A and connective tissue growth factor, downregulation of c-reactive protein, interleukin-1β, and tumor necrosis factor (TNF)-α mRNA-level]. Of the altered genes, which were evaluated by Western blot, only TNF-α protein expression was significantly decreased. The ECG recordings revealed no significant differences. In conclusion, while systolic dysfunction, myocardial inflammation, and abnormal electrical conduction remain absent, short-term and mild T2DM induce the alteration of cardiac TNF-α at both the mRNA and protein levels. Further assessments are required to reveal if TNF-α plays a role in the early stage of diabetic cardiomyopathy development. Topics: Animals; Apoptosis; Atrial Natriuretic Factor; Blood Glucose; C-Reactive Protein; Connective Tissue Growth Factor; Diabetes Mellitus, Type 2; Down-Regulation; Echocardiography; Electrocardiography; Fibrosis; Glucose Tolerance Test; Glycosuria; Hypertrophy, Left Ventricular; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Interleukin-1beta; Male; Myocardium; Natriuretic Peptide, Brain; Oxidative Stress; Peptide Fragments; Polymerase Chain Reaction; Rats; Rats, Wistar; RNA, Messenger; Signal Transduction; Troponin T; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure | 2016 |
H2S Attenuates LPS-Induced Acute Lung Injury by Reducing Oxidative/Nitrative Stress and Inflammation.
Hydrogen sulfide (H2S), known as the third endogenous gaseous transmitter, has received increasing attention because of its diverse effects, including angiogenesis, vascular relaxation and myocardial protection.We aimed to investigate the role of H2S in oxidative/nitrative stress and inflammation in acute lung injury (ALI) induced by endotoxemia.. Male ICR mice were divided in six groups: (1) Control group; (2) GYY4137treatment group; (3) L-NAME treatment group; (4) lipopolysaccharide (LPS) treatment group; (5) LPS with GYY4137 treatment group; and (6) LPS with L-NAME treatment group. The lungs were analysed by histology, NO production in the mouse lungs determined by modified Griess (Sigma-Aldrich) reaction, cytokine levels utilizing commercialkits, and protein abundance by Western blotting.. GYY4137, a slowly-releasing H2S donor, improved the histopathological changes in the lungs of endotoxemic mice. Treatment with NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, increased anti-oxidant biomarkers such as thetotal antioxidant capacity (T-AOC) and theactivities of catalase (CAT) and superoxide dismutase (SOD) but decreased a marker of peroxynitrite (ONOO-) action and 3-nitrotyrosine (3-NT) in endotoxemic lung. L-NAME administration also suppressed inflammation in endotoxemic lung, as evidenced by the decreased pulmonary levels of interleukin (IL)-6, IL-8, and myeloperoxidase (MPO) and the increased level of anti-inflammatory cytokine IL-10. GYY4137 treatment reversed endotoxin-induced oxidative/nitrative stress, as evidenced by a decrease in malondialdehyde (MDA), hydrogenperoxide (H2O2) and 3-NT and an increase in the antioxidant biomarker ratio of reduced/oxidized glutathione(GSH/GSSG ratio) and T-AOC, CAT and SOD activity. GYY4137 also attenuated endotoxin-induced lung inflammation. Moreover, treatment with GYY4137 inhibited inducible NOS (iNOS) expression and nitric oxide (NO) production in the endotoxemia lung.. GYY4137 conferred protection against acute endotoxemia-associated lung injury, which may have beendue to the anti-oxidant, anti-nitrative and anti-inflammatory properties of GYY4137. The present findings warrant further exploration of the clinical applicability of H2S in the prevention and treatment of ALI. Topics: Acute Lung Injury; Animals; Antioxidants; Endotoxemia; Hydrogen Peroxide; Hydrogen Sulfide; Inflammation; Inflammation Mediators; Lipopolysaccharides; Lung; Male; Malondialdehyde; Mice, Inbred ICR; Morpholines; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type II; Nitrosation; Organothiophosphorus Compounds; Oxidative Stress; Tyrosine | 2016 |
Glabridin, an isoflavan from licorice root, downregulates iNOS expression and activity under high-glucose stress and inflammation.
In females, hyperglycemia abolishes estrogen-vascular protection, leading to inflammation and oxidative stress that are related to diabetes-associated cardiovascular complications. Such knowledge led us to examine the potential of glabridin, as a replacement of estrogen anti-inflammatory activity under high-glucose conditions.. In macrophage-like cells, chronic glucose stress (28 and 44 mM) upregulated inducible nitric oxide synthase (iNOS) mRNA expression by 42 and 189%, respectively. Pretreatment with glabridin, under chronic glucose stress, downregulated the LPS-induced nitric oxide secretion and nitrotyrosine formation, by 39 and 21%, respectively. Pretreatment with estradiol did not prevent the LPS-induced nitrotyrosine formation. Furthermore, glabridin, brought about a decrease in the LPS-induced iNOS mRNA expression by 48%, as compared to cells pretreated with estradiol. Glabridin decreased protein levels of liver iNOS by 69% in adult mouse offspring which developed hyperglycemia after early fetal exposure to a saturated fatty acid-enriched maternal diet. Glabridin also decreased liver nitrotyrosine levels in offspring of regular diet-fed mothers after further receiving high-fat diet.. Such results indicate that glabridin retains anti-inflammatory abilities to regulate the synthesis and activity of iNOS under high-glucose levels, implying that a glabridin supplement may serve as an anti-inflammatory agent in diabetes-related vascular dysfunction. Topics: Animals; Anti-Inflammatory Agents; Blood Glucose; Diet, High-Fat; Disease Models, Animal; Down-Regulation; Female; Glycyrrhiza; Hyperglycemia; Inflammation; Isoflavones; Lipopolysaccharides; Liver; Macrophages; Mice; Mice, Inbred C57BL; Nitric Oxide; Nitric Oxide Synthase Type II; Oxidative Stress; Phenols; Plant Roots; RNA, Messenger; Stress, Physiological; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation | 2015 |
Sodium Butyrate Ameliorates L-Arginine-Induced Pancreatitis and Associated Fibrosis in Wistar Rat: Role of Inflammation and Nitrosative Stress.
Several reports indicated that histone deacetylases (HDACs) play a crucial role in inflammation and fibrogenesis. Sodium butyrate (SB) is a short-chain fatty acid having HDAC inhibition potential. The present study aimed to evaluate the protective effect of SB against L-arginine (L-Arg)-induced pancreatic fibrosis in Wistar rats. Pancreatic fibrosis was induced by twice intraperitoneal (i.p.) injections of 20% L-Arg (250 mg/100 g) at 2-h interval on day 1, 4, 7, and 10, whereas SB (800 mg/kg/day) was administrated for 10 days. At the end of the study, biochemical estimations, histological alterations, DNA damage, and the expression of various proteins were evaluated. Posttreatment of SB decreased L-Arg-induced oxidative and nitrosative stress, DNA damage, histological alterations, and fibrosis. Interestingly, posttreatment of SB significantly decreased the expression of α-smooth muscle actin, interleukin-1β, inducible nitric oxide synthase, and 3-nitrotyrosine. The present study demonstrated that posttreatment of SB alleviates L-Arg-induced pancreatic damage and fibrosis in rat. Topics: Animals; Arginine; Butyric Acid; Down-Regulation; Fibrosis; Inflammation; Nitric Oxide Synthase Type II; Pancreas; Pancreatitis; Rats, Wistar; Tyrosine | 2015 |
NADPH Oxidase-Derived Peroxynitrite Drives Inflammation in Mice and Human Nonalcoholic Steatohepatitis via TLR4-Lipid Raft Recruitment.
The molecular events that link NADPH oxidase activation and the induction of Toll-like receptor (TLR)-4 recruitment into hepatic lipid rafts in nonalcoholic steatohepatitis (NASH) are unclear. We hypothesized that in liver, NADPH oxidase activation is key in TLR4 recruitment into lipid rafts, which in turn up-regulates NF-κB translocation to the nucleus and subsequent DNA binding, leading to NASH progression. Results from confocal microscopy showed that liver from murine and human NASH had NADPH oxidase activation, which led to the formation of highly reactive peroxynitrite, as shown by 3-nitrotyrosine formation in diseased liver. Expression and recruitment of TLR4 into the lipid rafts were significantly greater in rodent and human NASH. The described phenomenon was NADPH oxidase, p47phox, and peroxynitrite dependent, as liver from p47phox-deficient mice and from mice treated with a peroxynitrite decomposition catalyst [iron(III) tetrakis(p-sulfonatophenyl)porphyrin] or a peroxynitrite scavenger (phenylboronic acid) had markedly less Tlr4 recruitment into lipid rafts. Mechanistically, peroxynitrite-induced TLR4 recruitment was linked to increased IL-1β, sinusoidal injury, and Kupffer cell activation while blocking peroxynitrite-attenuated NASH symptoms. The results strongly suggest that NADPH oxidase-mediated peroxynitrite drove TLR4 recruitment into hepatic lipid rafts and inflammation, whereas the in vivo use of the peroxynitrite scavenger phenylboronic acid, a novel synthetic molecule having high reactivity with peroxynitrite, attenuates inflammatory pathogenesis in NASH. Topics: Animals; Boronic Acids; Humans; Inflammation; Liver; Male; Membrane Microdomains; Mice; Mice, Inbred C57BL; Mice, Obese; Mice, Transgenic; NADPH Oxidases; NF-kappa B; Non-alcoholic Fatty Liver Disease; Peroxynitrous Acid; Signal Transduction; Specific Pathogen-Free Organisms; Toll-Like Receptor 4; Tyrosine | 2015 |
Neonatal exposure to mild hyperoxia causes persistent increases in oxidative stress and immune cells in the lungs of mice without altering lung structure.
Preterm infants often require supplemental oxygen due to lung immaturity, but hyperoxia can contribute to an increased risk of respiratory illness later in life. Our aim was to compare the effects of mild and moderate levels of neonatal hyperoxia on markers of pulmonary oxidative stress and inflammation and on lung architecture; both immediate and persistent effects were assessed. Neonatal mice (C57BL6/J) were raised in either room air (21% O2), mild (40% O2), or moderate (65% O2) hyperoxia from birth until postnatal day 7 (P7d). The mice were killed at either P7d (immediate effects) or lived in air until adulthood (P56d, persistent effects). We enumerated macrophages in lung tissue at P7d and immune cells in bronchoalveolar lavage fluid (BALF) at P56d. At P7d and P56d, we assessed pulmonary oxidative stress [heme oxygenase-1 (HO-1) and nitrotyrosine staining] and lung architecture. The data were interrogated for sex differences. At P7d, HO-1 gene expression was greater in the 65% O2 group than in the 21% O2 group. At P56d, the area of nitrotyrosine staining and number of immune cells were greater in the 40% O2 and 65% O2 groups relative to the 21% O2 group. Exposure to 65% O2, but not 40% O2, led to larger alveoli and lower tissue fraction in the short term and to persistently fewer bronchiolar-alveolar attachments. Exposure to 40% O2 or 65% O2 causes persistent increases in pulmonary oxidative stress and immune cells, suggesting chronic inflammation within the adult lung. Unlike 65% O2, 40% O2 does not affect lung architecture. Topics: Animals; Animals, Newborn; Bronchoalveolar Lavage Fluid; Female; Heme Oxygenase-1; Hyperoxia; Inflammation; Macrophages, Alveolar; Membrane Proteins; Mice; Mice, Inbred C57BL; Oxidative Stress; Oxygen; Pulmonary Alveoli; Tyrosine | 2015 |
Cardiac-specific overexpression of catalase prevents diabetes-induced pathological changes by inhibiting NF-κB signaling activation in the heart.
Catalase is an antioxidant enzyme that specifically catabolizes hydrogen peroxide (H2O2). Overexpression of catalase via a heart-specific promoter (CAT-TG) was reported to reduce diabetes-induced accumulation of reactive oxygen species (ROS) and further prevent diabetes-induced pathological abnormalities, including cardiac structural derangement and left ventricular abnormity in mice. However, the mechanism by which catalase overexpression protects heart function remains unclear. This study found that activation of a ROS-dependent NF-κB signaling pathway was downregulated in hearts of diabetic mice overexpressing catalase. In addition, catalase overexpression inhibited the significant increase in nitration levels of key enzymes involved in energy metabolism, including α-oxoglutarate dehydrogenase E1 component (α-KGD) and ATP synthase α and β subunits (ATP-α and ATP-β). To assess the effects of the NF-κB pathway activation on heart function, Bay11-7082, an inhibitor of the NF-κB signaling pathway, was injected into diabetic mice, protecting mice against the development of cardiac damage and increased nitrative modifications of key enzymes involved in energy metabolism. In conclusion, these findings demonstrated that catalase protects mouse hearts against diabetic cardiomyopathy, partially by suppressing NF-κB-dependent inflammatory responses and associated protein nitration. Topics: Animals; Apoptosis; Cardiotonic Agents; Catalase; Cell Line; Diabetes Mellitus, Experimental; Inflammation; Mice, Transgenic; Myocardium; NF-kappa B; Nitriles; Nitrosation; Organ Specificity; Reactive Nitrogen Species; Reactive Oxygen Species; Signal Transduction; Sulfones; Tyrosine | 2015 |
Deletion of thioredoxin-interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury.
Retinal neurodegeneration is an early and critical event in several diseases associated with blindness. Clinically, therapies that target neurodegeneration fail. We aimed to elucidate the multiple roles by which thioredoxin-interacting protein (TXNIP) contributes to initial and sustained retinal neurodegeneration.. Neurotoxicity was induced by intravitreal injection of NMDA into wild-type (WT) and TXNIP-knockout (TKO) mice. The expression of apoptotic and inflammatory markers was assessed by immunohistochemistry, elisa and Western blot. Microvascular degeneration was assessed by periodic acid-Schiff and haematoxylin staining and retinal function by electroretinogram.. NMDA induced early (1 day) and significant retinal PARP activation, a threefold increase in TUNEL-positive nuclei and 40% neuronal loss in ganglion cell layer (GCL); and vascular permeability in WT but not TKO mice. NMDA induced glial activation, expression of TNF-α and IL-1β that co-localized with Müller cells in WT but not TKO mice. In parallel, NMDA triggered the expression of NOD-like receptor protein (NLRP3), activation of caspase-1, and release of IL-1β and TNF-α in primary WT but not TKO Müller cultures. After 14 days, NMDA induced 1.9-fold microvascular degeneration, 60% neuronal loss in GCL and increased TUNEL-labelled cells in the GCL and inner nuclear layer in WT but not TKO mice. Electroretinogram analysis showed more significant reductions in b-wave amplitudes in WT than in TKO mice.. Targeting TXNIP expression prevented early retinal ganglion cell death, glial activation, retinal inflammation and secondary neuro/microvascular degeneration and preserved retinal function. TXNIP is a promising new therapeutic target for retinal neurodegenerative diseases. Topics: Adult; Aged; Animals; Apoptosis; Carrier Proteins; Cells, Cultured; Ependymoglial Cells; Female; Glaucoma, Open-Angle; Humans; Inflammation; Interleukin-1beta; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; N-Methylaspartate; Neurotoxicity Syndromes; Retina; Thioredoxin-Disulfide Reductase; Thioredoxins; Tumor Necrosis Factor-alpha; Tyrosine; Vascular System Injuries | 2014 |
Contribution of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway to ischemia/reperfusion-induced oxidative/nitrosative stress and inflammation leading to distant and target organ injury in rats.
The small G protein RhoA and its downstream effector Rho-kinase play an important role in various physiopathological processes including ischemia/reperfusion (I/R) injury. Reactive oxygen and nitrogen species produced by iNOS and NADPH oxidase are important mediators of inflammation and organ injury following an initial localized I/R event. The aim of this study was to determine whether RhoA/Rho-kinase signaling pathway increases the expression and activity of MEK1, ERK1/2, iNOS, gp91(phox), and p47(phox), and peroxynitrite formation which result in oxidative/nitrosative stress and inflammation leading to hindlimb I/R-induced injury in kidney as a distant organ and gastrocnemius muscle as a target organ. I/R-induced distant and target organ injury was performed by using the rat hindlimb tourniquet model. I/R caused an increase in the expression and/or activity of RhoA, MEK1, ERK1/2, iNOS, gp91(phox), p47(phox), and 3-nitrotyrosine and nitrotyrosine levels in the tissues. Although Rho-kinase activity was increased by I/R in the kidney, its activity was decreased in the muscle. Serum and tissue MDA levels and MPO activity were increased following I/R. I/R also caused an increase in SOD and catalase activities associated with decreased GSH levels in the tissues. Y-27632, a selective Rho-kinase inhibitor, (100µg/kg, i.p.; 1h before reperfusion) prevented the I/R-induced changes except Rho-kinase activity in the muscle. These results suggest that activation of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS pathway associated with oxidative/nitrosative stress and inflammation contributes to hindlimb I/R-induced distant organ injury in rats. It also seems that hindlimb I/R induces target organ injury via upregulation of RhoA/MEK1/ERK1/2/iNOS pathway associated with decreased Rho-kinase activity. Topics: Amides; Animals; Catalase; Glutathione; Inflammation; Kidney; Male; Malondialdehyde; MAP Kinase Kinase 1; MAP Kinase Signaling System; Muscle, Skeletal; NADPH Oxidases; Nitric Oxide Synthase Type II; Oxidative Stress; Peroxidase; Peroxynitrous Acid; Pyridines; Rats; Rats, Wistar; Reperfusion Injury; rho-Associated Kinases; rhoA GTP-Binding Protein; Superoxide Dismutase; Tyrosine | 2014 |
Dietary fish oil reduces systemic inflammation and ameliorates sepsis-induced liver injury by up-regulating the peroxisome proliferator-activated receptor gamma-mediated pathway in septic mice.
This study investigated the effect of dietary fish oil on systemic inflammation and hepatic injury in mice with polymicrobial sepsis. Male ICR mice were assigned to a control group (C, n=30) and a fish oil group (FO, n=30). Mice in the C group were fed a semi-purified diet with 10% soybean oil, and those in the FO group were fed a fish oil diet (2.5% fish oil+7.5% soybean oil; w/w). Three weeks later, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed at 0, 6 and 24 h after CLP, respectively. Results showed that compared with C group, the FO group had lower plasma levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-10, and nitrite at 6 and 24 h after CLP. Also, peritoneal lavage fluid concentrations of TNF-α and prostaglandin (PG) E2 were significantly lower at 24 h in the FO than in the C group. The FO group had lower myeloperoxidase activities at 6 h after CLP in various organs. Plasma aminotransferase and alanine aminotransferase activities revealed significantly decreased in the FO group. The DNA-binding activity of peroxisome proliferators-activated receptor gamma (PPARγ) and mRNA expression of I kappaB alpha (IκBα) were up-regulated while nuclear factor (NF)-κB p65 DNA-binding activity, inducible nitric oxide synthase protein expression and the concentration of nitrotyrosine were significantly decreased in the FO group in liver after CLP. These results indicate that dietary fish oil administration may attenuate systemic inflammation and up-regulate hepatic PPARγ DNA-binding activity, which may consequently have ameliorated liver injury in these septic mice. Topics: Animals; Biomarkers; Fatty Acids, Omega-3; Fish Oils; Inflammation; Interleukin-10; Interleukin-6; Liver; Liver Diseases; Male; Mice; Mice, Inbred ICR; NF-kappa B; Nitric Oxide Synthase Type II; Peroxidase; PPAR gamma; Sepsis; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation | 2014 |
Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease.
Numerous factors contribute to the death of substantia nigra (SN) dopamine (DA) neurons in Parkinson's disease (PD). Compelling evidence implicates mitochondrial deficiency, oxidative stress, and inflammation as important pathogenic factors in PD. Chronic exposure of rats to rotenone causes a PD-like syndrome, in part by causing oxidative damage and inflammation in substantia nigra. Pomegranate juice (PJ) has the greatest composite antioxidant potency index among beverages, and it has been demonstrated to have protective effects in a transgenic model of Alzheimer's disease. The present study was designed to examine the potential neuroprotective effects of PJ in the rotenone model of PD. Oral administration of PJ did not mitigate or prevent experimental PD but instead increased nigrostriatal terminal depletion, DA neuron loss, the inflammatory response, and caspase activation, thereby heightening neurodegeneration. The mechanisms underlying this effect are uncertain, but the finding that PJ per se enhanced nitrotyrosine, inducible nitric oxide synthase, and activated caspase-3 expression in nigral DA neurons is consistent with its potential pro-oxidant activity. Topics: Animals; Caspase 3; Disease Models, Animal; Dopaminergic Neurons; Inflammation; Lythraceae; Male; Mitochondrial Diseases; Nitric Oxide Synthase Type II; Oxidative Stress; Parkinson Disease; Rats; Rats, Inbred Lew; Rotenone; Substantia Nigra; Tyrosine | 2014 |
In utero exposure to diesel exhaust air pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood pressure, and increased susceptibility to heart failure in adult mice.
Exposure to fine particulate air pollution (PM₂.₅) is strongly associated with cardiovascular morbidity and mortality. Exposure to PM₂.₅ during pregnancy promotes reduced birthweight, and the associated adverse intrauterine conditions may also promote adult risk of cardiovascular disease. Here, we investigated the potential for in utero exposure to diesel exhaust (DE) air pollution, a major source of urban PM₂.₅, to promote adverse intrauterine conditions and influence adult susceptibility to disease. We exposed pregnant female C57Bl/6J mice to DE (≈300 µg/m³ PM₂.₅, 6 hrs/day, 5 days/week) from embryonic day (E) 0.5 to 17.5. At E17.5 embryos were collected for gravimetric analysis and assessed for evidence of resorption. Placental tissues underwent pathological examination to assess the extent of injury, inflammatory cell infiltration, and oxidative stress. In addition, some dams that were exposed to DE were allowed to give birth to pups and raise offspring in filtered air (FA) conditions. At 10-weeks of age, body weight and blood pressure were measured. At 12-weeks of age, cardiac function was assessed by echocardiography. Susceptibility to pressure overload-induced heart failure was then determined after transverse aortic constriction surgery. We found that in utero exposure to DE increases embryo resorption, and promotes placental hemorrhage, focal necrosis, compaction of labyrinth vascular spaces, inflammatory cell infiltration and oxidative stress. In addition, we observed that in utero DE exposure increased body weight, but counterintuitively reduced blood pressure without any changes in baseline cardiac function in adult male mice. Importantly, we observed these mice to have increased susceptibility to pressure-overload induced heart failure, suggesting this in utero exposure to DE 'reprograms' the heart to a heightened susceptibility to failure. These observations provide important data to suggest that developmental exposure to air pollution may strongly influence adult susceptibility to cardiovascular disease. Topics: Air Pollutants; Animals; Aorta; Blood Pressure; Echocardiography; Female; Heart Failure; Inflammation; Inhalation Exposure; Leukocyte Common Antigens; Male; Maternal Exposure; Mice; Mice, Inbred C57BL; Myocardium; Necrosis; Oxidative Stress; Particle Size; Pregnancy; Pregnancy, Animal; Time Factors; Tyrosine; Vehicle Emissions; Weight Gain | 2014 |
Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model.
Oxidative stress is a key factor regulating the systemic pathophysiological effects associated with periodontitis. Resveratrol is a phytochemical with antioxidant and anti-inflammatory properties that can reduce oxidative stress and inflammation. We hypothesized that resveratrol may prevent the progression of periodontitis and reduce systemic oxidative stress through the activation of the sirtuin 1 (Sirt1)/AMP-activated protein kinase (AMPK) and the nuclear factor E2-related factor 2 (Nrf2)/antioxidant defense pathways. Three groups of male Wistar rats (periodontitis treated with melinjo resveratrol, periodontitis without resveratrol, and control rats with no periodontitis or resveratrol treatment) were examined. A ligature was placed around the maxillary molars for 3 weeks to induce periodontitis, and the rats were then given drinking water with or without melinjo resveratrol. In rats with periodontitis, ligature placement induced alveolar bone resorption, quantified using three-dimensional images taken by micro-CT, and increased proinflammatory cytokine levels in gingival tissue. Melinjo resveratrol intake relieved alveolar bone resorption and activated the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in inflamed gingival tissues. Further, melinjo resveratrol improved the systemic levels of 8-hydroxydeoxyguanosine, dityrosine, nitric oxide metabolism, nitrotyrosine, and proinflammatory cytokines. We conclude that oral administration of melinjo resveratrol may prevent the progression of ligature-induced periodontitis and improve systemic oxidative and nitrosative stress. Topics: 8-Hydroxy-2'-Deoxyguanosine; AMP-Activated Protein Kinases; Animals; Anti-Inflammatory Agents; Antioxidants; Bone Resorption; Cytokines; Deoxyguanosine; Disease Models, Animal; Gingiva; Inflammation; Male; NF-E2-Related Factor 2; Nitric Oxide; Oxidative Stress; Periodontitis; Random Allocation; Rats; Rats, Wistar; Resveratrol; Sirtuin 1; Stilbenes; Tyrosine | 2014 |
Absence of TLR4 reduces neurovascular unit and secondary inflammatory process after traumatic brain injury in mice.
Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. Toll-like receptors (TLRs) are signaling receptors in the innate immune system, although emerging evidence indicates their role in brain injury. We have therefore investigated the role played by TLR4 signaling pathway in the development of mechanisms of secondary inflammatory process in traumatic brain injury (TBI) differ in mice that lack a functional TLR4 signaling pathway.. Controlled cortical impact injury was performed on TLR4 knockout (KO) mice (C57BL/10ScNJ) and wild-type (WT) mice (C57BL/10ScNJ). TBI outcome was evaluated by determination of infarct volume and assessment of neurological scores. Brains were collected at 24 h after TBI. When compared to WT mice, TLR4 KO mice had lower infarct volumes and better outcomes in neurological and behavioral tests (evaluated by EBST and rotarod test). Mice that lacked TLR4 had minor expression of TBI-induced GFAP, Chymase, Tryptase, IL-1β, iNOS, PARP and Nitrotyrosine mediators implicated in brain damage. The translocation of expression of p-JNK, IκB-α and NF-κB pathway were also lower in brains from TLR4 KO mice. When compared to WT mice, resulted in significant augmentation of all the above described parameters. In addition, apoptosis levels in TLR4 KO mice had minor expression of Bax while on the contrary with Bcl-2.. Our results clearly demonstrated that absence of TLR4 reduces the development of neuroinflammation, tissues injury events associated with brain trauma and may play a neuroprotective role in TBI in mice. Topics: Animals; Brain Infarction; Brain Injuries; Cerebral Cortex; Gene Expression Regulation; Glial Fibrillary Acidic Protein; I-kappa B Proteins; Inflammation; Interleukin-1beta; MAP Kinase Kinase 4; Mice; Mice, Knockout; Nerve Tissue Proteins; NF-kappa B; NF-KappaB Inhibitor alpha; Nitric Oxide Synthase Type II; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerases; Toll-Like Receptor 4; Tryptases; Tyrosine | 2013 |
Effects of balanced hydroxyethyl starch solutions on gut mucosal microcirculation and exhaled nitric oxide in septic rats: A randomised, animal study.
Balanced hydroxyethyl starch (HES) solutions with a molecular weight of 130 kDa (tetrastarches) are frequently used in clinical practice. These solutions are derived either from waxy maize or potato starch and they are not bioequivalent.. Investigation of the effects of waxy maize-derived and potato-derived starches on intestinal microcirculation and pulmonary inflammation in experimental sepsis.. A randomised (three groups), blinded animal study.. Animal experimental facility in a university hospital.. Twenty-one male Sprague-Dawley rats weighing 275 to 300 g.. Sepsis was induced by caecal ligation and puncture. Animals received balanced crystalloid infusion (6 ml kg h) for 23 h followed by randomised 1 h bolus infusion (30 ml kg h) of crystalloid: balanced crystalloid solution or waxy maize starch: 6% wt/vol HES 130/0.4 or potato starch: 6% wt/vol HES 130/0.42. Results are presented as median (interquartiles).. Using intravital microscopy, mucosal perfusion was assessed by intercapillary area (ICA) between all perfused capillaries (ICAtotal) and continuously perfused capillaries only (ICAcont). Mucosal blood flow was calculated from arteriolar diameter and red blood cell velocity. Intestinal wall 3-nitrotyrosine (3-NTint) content and exhaled nitric oxide (exNO), to indicate pulmonary inflammation, were measured.. Both tetrastarches improved capillary perfusion compared to the crystalloid group, as indicated by reduced ICAtotal [crystalloid 1054 (905 to 1211) μm; waxy maize starch 789 (744 to 940) μm, P <0.05; potato starch 674 (536 to 693) μm, P < 0.05] and reduced ICAcont [crystalloid 1060 (996 to 1340) μm; waxy maize starch 860 (793 to 975) μm, P <0.05; potato starch 701 (558 to 728) μm, P <0.05]. Mucosal blood flow and systemic blood pressure did not differ significantly between groups. 3-NTint was comparable among all groups. exNO was significantly reduced from 11.1 (5.0 to 16.5) ppb to 4.2 (4.0 to 4.8) ppb in the waxy maize group, whereas no significant difference was detected in the potato starch group 6.2 (4.8 to 10.5).. Bolus infusion of balanced 6% wt/vol tetrastarches augments mucosal capillary perfusion. Pulmonary inflammation in sepsis is differentially influenced by tetrastarches produced from different raw materials. Topics: Animals; Arterioles; Capillaries; Disease Models, Animal; Erythrocytes; Hydroxyethyl Starch Derivatives; Inflammation; Intestines; Male; Microcirculation; Nitric Oxide; Oxidative Stress; Plasma Substitutes; Random Allocation; Rats; Rats, Sprague-Dawley; Sepsis; Solanum tuberosum; Tyrosine; Zea mays | 2013 |
Glycyrrhizin represses total parenteral nutrition-associated acute liver injury in rats by suppressing endoplasmic reticulum stress.
Total parenteral nutrition (TPN) is an artificial way to support daily nutritional requirements by bypassing the digestive system, but long-term TPN administration may cause severe liver dysfunction. Glycyrrhizin is an active component of licorice root that has been widely used to treat chronic hepatitis. The aim of this study is to investigate the hepatoprotective effect of glycyrrhizin on TPN-associated acute liver injury in vivo. Liver dysfunction was induced by intravenous infusion of TPN at a flow rate of 20 mL/kg/h for three h in Sprague Dawley rats. The rats were pretreated with Glycyrrhizin (1, 3 and 10 mg/kg intravenously). After receiving TPN or saline (control group) for three h, the rats were sacrificed, blood samples were collected for biochemical analyses and liver tissue was removed for histopathological and immunohistochemical examination. We found that aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TB) and triglyceride (TG) levels were significantly increased in the TPN group without glycyrrhizin pretreatment and decreased in the glycyrrhizin-pretreated TPN group in a dose-dependent manner. The stained liver sections showed that glycyrrhizin relieved acute liver injury. The upregulation of serum protein biomarkers of reactive nitrogen species, including nitrotyrosine and inducible NO synthase (iNOS), were attenuated by glycyrrhizin pretreatment. Levels of endoplasmic reticulum (ER) stress factors, such as phosphorylation of JNK1/2, p38 MAPK and CHOP, were decreased by glycyrrhizin pretreatment. In summary, our results suggest that glycyrrhizin decreases TPN-associated acute liver injury factors by suppressing endoplasmic reticulum stress and reactive nitrogen stress. Topics: Animals; Apoptosis; Bilirubin; Caspase 3; Cytokines; Endoplasmic Reticulum Stress; Glycyrrhizic Acid; Immunohistochemistry; Inflammation; Inflammation Mediators; JNK Mitogen-Activated Protein Kinases; Liver; Liver Diseases; Male; Nitric Oxide Synthase Type II; p38 Mitogen-Activated Protein Kinases; Parenteral Nutrition, Total; Phosphorylation; Rats, Sprague-Dawley; Reactive Nitrogen Species; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Transcription Factor CHOP; Triglycerides; Tyrosine | 2013 |
Effects of tempol on endothelial and vascular dysfunctions and insulin resistance induced by a high-fat high-sucrose diet in the rat.
We investigated the effects of treatment with tempol (an antioxidant) on vascular and metabolic dysfunction induced by a high-fat high-sucrose (HFHS) diet. Rats were randomized to receive an HFHS or chow diet with or without tempol treatment (1.5 mmol·(kg body mass)(-1)·day(-1)) for 4 weeks. Blood pressure, heart rate, and blood flow were measured in the rats by using intravascular catheters and Doppler flow probes. Insulin sensitivity and vascular responses to insulin were assessed during a euglycemic-hyperinsulinemic clamp. In-vitro studies were performed to evaluate vascular reactivity and endothelial and inducible nitric oxide synthase (eNOS; iNOS) expression in vascular and muscle tissues. Endothelin, nitrotyrosine, and NAD(P)H oxidase expressions were determined in vascular tissues, and glucose transport activity and glucose transporter 4 (GLUT4) expression were examined in muscles. Tempol treatment was found to prevent alterations in insulin sensitivity, glucose transport activity, GLUT4 expression, and vascular reactivity, and to prevent increases in plasma insulin, blood pressure, and heart rate noted in the untreated HFHS-fed rats. These were associated with increased levels of eNOS expression in vascular and muscle tissues, but reductions in nitrotyrosine, endothelin, NAD(P)H oxidase, and iNOS expressions. Therefore, oxidative stress induced by a relatively short-term HFHS diet could contribute to the early development of vascular and metabolic abnormalities in rats. Topics: Animals; Aorta, Thoracic; Blood Pressure; Body Mass Index; Cyclic N-Oxides; Diet, High-Fat; Dietary Sucrose; Endothelin-1; Endothelins; Endothelium, Vascular; Glucose; Glucose Transporter Type 4; Heart Rate; Hemodynamics; Inflammation; Insulin; Insulin Resistance; Male; Muscle, Skeletal; NADPH Oxidases; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Random Allocation; Rats; Rats, Sprague-Dawley; Regional Blood Flow; Spin Labels; Tyrosine | 2013 |
Association between erythrocyte n-3 polyunsaturated fatty acids and biomarkers of inflammation and oxidative stress in patients with and without depression.
Associations between n-3 polyunsaturated fatty acids (PUFAs), inflammation, oxidative stress and the risk of depression have been suggested. We hypothesize that erythrocyte n-3 PUFAs are inversely associated with biomarkers for inflammation and oxidative stress in Koreans with and without depression. Study participants comprised 80 cases diagnosed with depression based on the Center for Epidemiological Studies Depression Scale Korea version (CES-D-K) scores ≥25 and psychiatrist confirmation and 80 age- and sex-matched healthy controls without histories of depression. Depressed patients had lower levels of n-3 PUFAs and higher circulating levels of inducible nitric oxide synthase (iNOS), superoxide dismutase, interferon-γ, and nitrotyrosine compared to the controls. CES-D-K scores and levels of iNOS and tumor necrosis factor (TNF)-α were negatively associated with Omega-3 Index (erythrocyte levels of eicosapentaenoic acid and docosahexaenoic acid) after adjusting for confounding factors. Concentrations of iNOS, TNF-α, thiobarbituric acid reactive substances, and nitrotyrosine were negatively correlated with erythrocyte levels of n-3 PUFAs, but positively with erythrocyte levels of n-6 PUFAs. Erythrocyte levels of n-3 PUFAs were inversely associated with circulating markers of inflammation and oxidative stress in Koreans with and without depression in this case control study. Future randomized controlled trials are needed to determine whether dietary or supplemental n-3 PUFAs can reduce inflammation and oxidative stress, and reduce depressive symptoms in humans. Topics: Adult; Asian People; Biomarkers; Case-Control Studies; Depression; Erythrocytes; Fatty Acids, Omega-3; Fatty Acids, Omega-6; Female; Humans; Inflammation; Interferon-gamma; Male; Middle Aged; Nitric Oxide Synthase Type II; Oxidative Stress; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances; Tumor Necrosis Factor-alpha; Tyrosine | 2013 |
Xanthohumol modulates inflammation, oxidative stress, and angiogenesis in type 1 diabetic rat skin wound healing.
Type 1 diabetes mellitus is responsible for metabolic dysfunction, accompanied by chronic inflammation, oxidative stress, and endothelium dysfunction, and is often associated with impaired wound healing. Phenol-rich food improves vascular function, contributing to diabetes prevention. This study has evaluated the effect of phenol-rich beverage consumption in diabetic rats on wound healing, through angiogenesis, inflammation, and oxidative stress modulation. A wound-healing assay was performed in streptozotocin-induced diabetic Wistar rats drinking water, 5% ethanol, and stout beer with and without 10 mg/L xanthohumol (1), for a five-week period. Wounded skin microvessel density was reduced to normal values upon consumption of 1 in diabetic rats, being accompanied by decreased serum VEGF-A and inflammatory markers (IL-1β, NO, N-acetylglucosaminidase). Systemic glutathione and kidney and liver H2O2, 3-nitrotyrosine, and protein carbonylation also decreased to healthy levels after treatment with 1, implying an improvement in oxidative stress status. These findings suggest that consumption of xanthohumol (1) by diabetic animals consistently decreases inflammation and oxidative stress, allowing neovascularization control and improving diabetic wound healing. Topics: Angiogenesis Inducing Agents; Animals; Diabetes Mellitus, Experimental; Flavonoids; Glutathione; Hydrogen Peroxide; Inflammation; Interleukin-1beta; Liver; Male; Neovascularization, Pathologic; Oxidative Stress; Phenols; Propiophenones; Rats; Rats, Wistar; Skin; Tyrosine; Vascular Endothelial Growth Factor A; Wound Healing | 2013 |
Bladder pain syndrome/interstitial cystitis ESSIC type 3C: high expression of inducible nitric oxide synthase in inflammatory cells.
Bladder pain syndrome/interstitial cystitis (BPS/IC) includes a heterogeneous collection of underlying pathological conditions. Compared to the classic IC with a Hunner lesion, now denominated ESSIC type 3C, the non-Hunner type of BPS/IC appears different in a number of respects. In a previous study, measuring luminal nitric oxide (NO) in the bladder of patients with BPS/IC, it was reported that all patients with ESSIC type 3C had high levels of NO. The aim of the present study was to investigate the source of inducible nitric oxide synthase (iNOS) and thereby the cellular origin of NO production via iNOS.. Immunohistochemistry, with two different anti-iNOS antibodies, was used to study 10 patients with BPS/IC ESSIC type 3C who expressed high levels of intraluminal NO. These results were compared with four patients with non-Hunner BPS/IC. To substantiate further the involvement of iNOS in this condition, the protein expression of nitrotyrosine, a marker for iNOS activation, was also assessed.. On routine histopathology, the tissues of type 3C patients exhibited inflammatory infiltrates of varying intensity. Strong immunoreactivity for both iNOS and nitrotyrosine was noted within the urothelium but also within the inflammatory infiltrates in the lamina propria of these subjects.. The findings of a clearly detectable protein expression of iNOS in both the urothelium and the inflammatory infiltrates in bladder biopsies from patients with BPS/IC ESSIC type 3C suggest that the production of NO, in this entity, may occur in different tissue compartments. Topics: Biomarkers; Biopsy; Cystitis, Interstitial; Humans; Inflammation; Middle Aged; Nitric Oxide; Nitric Oxide Synthase Type II; Retrospective Studies; Syndrome; Tyrosine; Urinary Bladder; Urinary Bladder Diseases; Urothelium | 2013 |
Pomegranate phytoconstituents blunt the inflammatory cascade in a chemically induced rodent model of hepatocellular carcinogenesis.
Liver cancer, predominantly hepatocellular carcinoma (HCC), represents a complex and fatal malignancy driven primarily by oxidative stress and inflammation. Due to dismal prognosis and limited therapeutic intervention, chemoprevention has emerged as a viable approach to reduce the morbidity and mortality of HCC. Pomegranate fruit is a rich source of phytochemicals endowed with potent antioxidant and anti-inflammatory properties. We previously reported that pomegranate phytochemicals inhibit diethylnitrosamine (DENA)-initiated hepatocarcinogenesis in rats though nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant mechanisms. Since Nrf2 also acts as a key mediator of the nuclear factor-kappaB (NF-κB)-regulated inflammatory pathway, our present study investigated the anti-inflammatory mechanisms of a pomegranate emulsion (PE) during DENA-induced rat hepatocarcinogenesis. Rats were administered with PE (1 or 10 g/kg) 4 weeks before and 18 weeks following DENA initiation. There was a significant increase in hepatic expressions of inducible nitric oxide synthase, 3-nitrotyrosine, heat shock protein 70 and 90, cyclooxygenase-2 and NF-κB in DENA-exposed rat livers. PE dose-dependently suppressed all aforementioned elevated inflammatory markers. A conspicuous finding of this study involves lack of cardiotoxicity of PE as assessed by monitoring cardiac function using noninvasive echocardiography. Our results provide substantial evidence that suppression of the inflammatory cascade through modulation of NF-κB signaling pathway may represent a novel mechanism of liver tumor inhibitory effects of PE against experimental hepatocarcinogenesis. Data presented here coupled with those of our earlier study underline the importance of simultaneously targeting two interconnected molecular circuits, namely, Nrf2-mediated redox signaling and NF-κB-regulated inflammatory pathway, by pomegranate phytoconstituents to achieve chemoprevention of HCC. Topics: Animals; Anticarcinogenic Agents; Carcinoma, Hepatocellular; Cyclooxygenase 2; Diethylnitrosamine; Echocardiography; Heart; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Inflammation; Liver; Liver Neoplasms; Liver Neoplasms, Experimental; Lythraceae; Male; NF-kappa B; Nitric Oxide Synthase Type II; Plant Extracts; Rats; Rats, Sprague-Dawley; Tyrosine | 2013 |
Long-term binge and escalating ethanol exposure causes necroinflammation and fibrosis in rat liver.
To investigate whether "binge" and escalating alcohol exposure in the rat influences the development of pathological liver injury.. Time courses for the formation of eicosanoids by cyclooxygenase (COX), oxidative stress and nitrosative stress production, expression of hypoxia-inducible factor 1 (HIF-1), cytokines, hepatic tissue necroinflammation, and fibrosis were assessed in rats during 16 weeks of daily alcohol gavage.. In this model of binge and escalating levels of alcohol, hepatic steatosis, necrosis, and inflammation as well as fibrosis were increased over the 16-week period. The levels of COX-2, oxidative stress, nitrosative stress, HIF-1, proinflammatory mediators (tumor necrosis factor-α, interleukin 1(β) [IL-1(β) ], IL-6), and procollagen-I were increased over the 16-week period. The content of IL-10 in rat serum increased at the end of 4 and 8 weeks but decreased thereafter and was significantly decreased at 12 and 16 weeks.. A rat model of alcoholic liver disease (ALD) with long-term binge and escalating ethanol exposure was developed. Our data support the hypothesis that enhanced eicosanoid production by COX, oxidative stress and nitrosative stress, HIF-1, and the imbalance between pro- and anti-inflammatory cytokines plays an important role in the pathogenesis of ALD. Topics: Animals; Binge Drinking; Cyclooxygenase 1; Cyclooxygenase 2; Cytokines; Ethanol; Hypoxia-Inducible Factor 1; Inflammation; Inflammation Mediators; Liver; Liver Cirrhosis; Male; Necrosis; Nitric Oxide Synthase Type II; Oxidative Stress; Procollagen; Rats; Rats, Wistar; Tyrosine | 2013 |
The renal injury and inflammation caused by ischemia-reperfusion are reduced by genetic inhibition of TNF-αR1: a comparison with infliximab treatment.
The role of the tumor necrosis factor (TNF)-α in the pathophysiology of renal ischemia/reperfusion (I/R) injury is unclear. We investigate the effects of TNF-αR1 gene deletion and infliximab administration on the degree of renal injury induced by I/R. TNF-αR1 knockout (TNF-αR1KO) and wild-type (TNF-αWT) mice were subjected to bilateral renal artery occlusion (30min) and reperfusion (24h). Infliximab (10mg/kg subcutaneously, s.c.) was administered 1h before ischemia. At the end of experiments, urea, creatinine, γGT, and AST were measured to assess renal function and reperfusion injury. Markers of oxidative stress, pro-inflammatory mediators, iNOS, COX-2, and NF-κB signaling pathway were measured. Kidney myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels were measured to study polymorphonuclear cell infiltration and lipid peroxidation. TNF-αR1 gene deletion and infliximab administration prevented the increase of urea, creatinine, γGT, kidney AST levels, iNOS and COX-2 expression, NF-κB translocation, MPO activity and MDA levels. TNF-αR1 gene deletion and infliximab administration lowered the histological evidence of renal damage associated with I/R and caused a reduction of nitrotyrosine suggesting reduced nitrosative stress. Our results demonstrate that TNF-α plays an important role in I/R injury and put forward the hypothesis that modulation of TNF-α expression may represent a novel and possible strategy. Topics: Acute Kidney Injury; Animals; Antibodies, Monoclonal; Apoptosis; Biomarkers; Cell Adhesion Molecules; Gene Deletion; Gene Expression Regulation; Gene Knockout Techniques; Inflammation; Infliximab; Interleukin-1beta; Kidney; Lipid Peroxidation; Male; Mice; Neutrophil Infiltration; Oxidative Stress; Receptors, Tumor Necrosis Factor, Type I; Reperfusion Injury; Tumor Necrosis Factor-alpha; Tyrosine | 2013 |
Evaluation of inflammatory response to acute ischemia using near-infrared fluorescent reactive oxygen sensors.
Ischemia-related processes associated with the generation of inflammatory molecules such as reactive oxygen species (ROS) are difficult to detect at the acute stage before the physiologic and anatomic evidence of tissue damage is present. Evaluation of the inflammatory and healing response early after an ischemic event in vivo will aid in treatment selection and patient outcomes. We introduce a novel near-infrared hydrocyanine molecular probe for the detection of ROS as a marker of tissue response to ischemia and a precursor to angiogenesis and remodeling. The synthesized molecular probe, initially a non-fluorescent hydrocyanine conjugated to polyethylene glycol, converts to a highly fluorescent cyanine reporter upon oxidation.. The probe was applied in a preclinical mouse model for myocardial infarction, where ligation and removal of a portion of the femoral artery in the hindlimb resulted in temporary ischemia followed by angiogenesis and healing.. The observed increase in fluorescence intensity was approximately sixfold over 24 h in the ischemic tissue relative to the uninjured control limb and was attributed to the higher concentration of ROS in the ischemic tissue.. These results demonstrate the potential for non-invasive sensing for interrogating the inflammatory and healing response in ischemic tissue. Topics: Animals; Biosensing Techniques; Disease Models, Animal; Electrophoresis, Polyacrylamide Gel; Fluorescence; Fluorescent Dyes; Hindlimb; Immunohistochemistry; Inflammation; Ischemia; Mice; Mice, Inbred C57BL; Muscles; Reactive Oxygen Species; Spectroscopy, Near-Infrared; Tissue Distribution; Tyrosine | 2013 |
Green tea extract protects against nonalcoholic steatohepatitis in ob/ob mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes.
Oxidative and nitrative stress responses resulting from inflammation exacerbate liver injury associated with nonalcoholic steatohepatitis (NASH) by inducing lipid peroxidation and protein nitration. The objective of this study was to investigate whether the anti-inflammatory properties of green tea extract (GTE) would protect against NASH by suppressing oxidative and nitrative damage mediated by proinflammatory enzymes. Obese mice (ob/ob) and their 5-week-old C57BL6 lean littermates were fed 0%, 0.5% or 1% GTE for 6 weeks (n=12-13 mice/group). In obese mice, hepatic lipid accumulation, inflammatory infiltrates and serum alanine aminotransferase activity were markedly increased, whereas these markers of hepatic steatosis, inflammation and injury were significantly reduced among obese mice fed GTE. GTE also normalized hepatic 4-hydroxynonenal and 3-nitro-tyrosine (N-Tyr) concentrations to those observed in lean controls. These oxidative and nitrative damage markers were correlated with alanine aminotransferase (P<.05; r=0.410-0.471). Improvements in oxidative and nitrative damage by GTE were also associated with lower hepatic nicotinamide adenine dinucleotide phosphate oxidase activity. Likewise, GTE reduced protein expression levels of hepatic myeloperoxidase and inducible nitric oxide synthase and decreased the concentrations of nitric oxide metabolites. Correlative relationships between nicotinamide adenine dinucleotide phosphate oxidase and hepatic 4-hydroxynonenal (r=0.364) as well as nitric oxide metabolites and N-Tyr (r=0.598) suggest that GTE mitigates lipid peroxidation and protein nitration by suppressing the generation of reactive oxygen and nitrogen species. Further study is warranted to determine whether GTE can be recommended as an effective dietary strategy to reduce the risk of obesity-triggered NASH. Topics: Alanine Transaminase; Aldehydes; Animals; Anti-Inflammatory Agents; Fatty Liver; Inflammation; Lipid Peroxidation; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Obese; NADPH Oxidases; Nitric Oxide Synthase Type II; Non-alcoholic Fatty Liver Disease; Obesity; Oxidative Stress; Peroxidase; Plant Extracts; Reactive Oxygen Species; Stress, Physiological; Tea; Tyrosine | 2012 |
Plant polyphenols attenuate hepatic injury after hemorrhage/resuscitation by inhibition of apoptosis, oxidative stress, and inflammation via NF-kappaB in rats.
Oxidative stress and inflammation contribute to hepatic injury after hemorrhage/resuscitation (H/R). Natural plant polyphenols, i.e., green tea extract (GTE) possess high anti-oxidant and anti-inflammatory activities in various models of acute inflammation. However, possible protective effects and feasible mechanisms by which plant polyphenols modulate pro-inflammatory, apoptotic, and oxidant signaling after H/R in the liver remain unknown. Therefore, we investigated the effects of GTE and its impact on the activation of NF-kappaB in the pathogenesis of hepatic injury induced by H/R.. Twenty-four female LEWIS rats (180-250 g) were fed a standard chow (ctrl) or a diet containing 0.1% polyphenolic extracts (GTE) from Camellia sinensis starting 5 days before H/R. Rats were hemorrhaged to a mean arterial pressure of 30 ± 2 mmHg for 60 min and resuscitated (H/R and GTE H/R groups). Control groups (sham, ctrl, and GTE) underwent surgical procedures without H/R. Two hours after resuscitation, tissues were harvested.. Plasma alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) increased 3.5-fold and fourfold, respectively, in vehicle-treated rats as compared to GTE-fed rats. Histopathological analysis revealed significantly decreased hepatic necrosis and apoptosis in GTE-fed rats after H/R. Real-time PCR showed that GTE diminished gene expression of pro-apoptotic caspase-8 and Bax, while anti-apoptotic Bcl-2 was increased after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress as well as systemic IL-6 level and hepatic IL-6 mRNA were markedly reduced in GTE-fed rats compared with controls after H/R. Plant polyphenols also decreased the activation of both JNK and NFκB.. Taken together, GTE application blunts hepatic damage, apoptotic, oxidative, and pro-inflammatory changes after H/R. These results underline the important roles of JNK and NF-kappaB in inflammatory processes after H/R and the beneficial impact of plant polyphenols in preventing their activation. Topics: Acute Disease; Alanine Transaminase; Aldehydes; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; bcl-2-Associated X Protein; Caspase 8; Female; Gene Expression Regulation; Hemorrhage; Inflammation; Interleukin-6; L-Lactate Dehydrogenase; Liver; NF-kappa B; Oxidative Stress; Plant Extracts; Polyphenols; Rats; Rats, Inbred Lew; Resuscitation; RNA; Tea; Tyrosine | 2012 |
Competitive, non-competitive, and mixed format cleavable tag immunoassays.
Immunoassays are one of the most useful diagnostic techniques in disease assessment, drug metabolite analysis, and environmental applications due largely in part to the selectivity and sensitivity provided by antibody-antigen interactions. Here, a multiplexed immunoassay termed cleavable tag immunoassay (CTI) was performed in competitive, non-competitive, and mixed formats for the analysis of proteins and small molecule biomarkers of inflammation and tissue damage. Microchip capillary electrophoresis (MCE) with fluorescence detection was employed for the analysis of fluorescently labeled tags corresponding to the analytes of interest cleaved from the detection antibodies. For this work we have selected 3-nitrotyrosine (3-NT) a molecule indicative of reactive nitrogen species (RNS), thyroxine (T4) a molecule used to monitor thyroid gland function, and C-reactive protein (CRP) a marker of chronic inflammation as model analytes to demonstrate the assay principles. The simultaneous detection of 3-nitrotyrosine (3-NT) and thyroxine (T4) was carried out as a proof-of-principle for the competitive CTI while non-competitive CTI performance was demonstrated via the analysis of C-reactive protein (CRP). Limit of detections (LOD) and dynamic ranges were investigated. LOD for 3-NT, T4, and CRP were 0.5μg/mL, 23nM, and 5μg/mL, respectively thus demonstrating the ability of the CTI to detect proteins and small molecules within clinical reference ranges. Moreover, this is the first report of the use of mixed format CTI chemistry for the simultaneous detection of proteins (CRP) and small molecules (3-NT) in a single assay. The success of this work demonstrates the ability of CTI to analyze intact proteins and small molecule biomarkers simultaneously. Topics: Antibodies; Avidin; Binding, Competitive; Biomarkers; C-Reactive Protein; Electrophoresis, Capillary; Fluorescence; Fluorescent Dyes; Immunoassay; Inflammation; Limit of Detection; Microscopy, Fluorescence; Reactive Nitrogen Species; Reference Standards; Thyroxine; Tyrosine | 2012 |
β-Carotene and lycopene affect endothelial response to TNF-α reducing nitro-oxidative stress and interaction with monocytes.
Cardiovascular disease (CVD) is associated with vascular oxidative imbalance and inflammation. Increased reactive oxygen species (ROS) generation is associated with a functional inactivation of nitric oxide (NO) due to the reaction with O₂⁻, leading to peroxynitrite (ONOO⁻) formation and subsequent reduction in the beneficial effect of vascular NO bioavailability. Carotenoids'-rich diets have been associated with decreased risk of CVD, but the underlying mechanism is still unknown.. In human umbilical vein endothelial cells (HUVECs), both β-carotene (BC) or lycopene (Lyc) significantly affected tumor necrosis factor-α (TNF-α)-induced inflammation, being associated with a significant decrease in the generation of ROS (spectrofluorometry) and nitrotyrosine (an index of ONOO⁻ formation, cytofluorimetry), an increased NO/cGMP (cyclic guanosine monophosphate) levels (EIA), and a down-regulation of NF-κB-dependent adhesion molecule expression (Western blot and EMSA) and monocyte-HUVEC interaction (adhesion assay). Our results indicate that BC or Lyc treatment reduce the inflammatory response in TNF-α-treated HUVECs. This is due to the redox balance protection and to the maintenance of NO bioavailability.. Our observations provide background for a novel mechanism for carotenoids' anti-inflammatory activity in the vasculature and may contribute to a better understanding of the protective effects of carotenoid-rich diets against CVD risk. Topics: Anti-Inflammatory Agents, Non-Steroidal; beta Carotene; Biological Availability; Carotenoids; Cell Adhesion; Cell Adhesion Molecules; Cyclic GMP; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Lycopene; Monocytes; NF-kappa B; Nitric Oxide; Oxidative Stress; Reactive Oxygen Species; Tumor Necrosis Factor-alpha; Tyrosine | 2012 |
RAGE mediates vascular injury and inflammation after global cerebral ischemia.
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor involved in a diverse range of pathological conditions. To analyze the roles of RAGE and its decoy receptor, endogenous secretory RAGE (esRAGE), in the global cerebral ischemia, three different mouse cohorts, wild-type, RAGE⁻/⁻, and esRAGE transgenic (Tg) mice were subjected to bilateral common carotid artery occlusion (BCCAO). RT-PCR and immunohistochemical analysis revealed that expression of RAGE was induced in the vascular cells at 12 h, and then in the neurons and glia from 3 to 7 days in the hippocampus after BCCAO. The numbers of surviving neurons in the hippocampal CA1 region were significantly higher in RAGE⁻/⁻ and esRAGE Tg mice than those in wild-type mice in the periods between 24 h and 7 days after BCCAO. Lower levels of 3-nitrotyrosine (3-NT) and higher levels of endothelial nitric oxide synthase (eNOS), together with enlarged vascular areas were observed in RAGE⁻/⁻ and esRAGE Tg mice at 12 h after BCCAO. In the later periods, expressions of glia-derived inflammatory mediators TNFα and inducible nitric oxide synthase (iNOS) were reduced in RAGE⁻/⁻ and esRAGE Tg mice. These results suggest that RAGE may contribute to delayed neuronal death after global cerebral ischemia by enhancing vascular injury and deleterious glia-mediated inflammation. Topics: Animals; Brain Ischemia; Carotid Artery Injuries; Cell Death; Image Processing, Computer-Assisted; Immunohistochemistry; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Transgenic; Neuroglia; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Real-Time Polymerase Chain Reaction; Receptor for Advanced Glycation End Products; Receptors, Immunologic; Stroke; Tumor Necrosis Factor-alpha; Tyrosine; Vascular System Injuries | 2012 |
The antioxidant and anti-inflammatory activities of tocopherols are independent of Nrf2 in mice.
The present study investigated the antioxidant and anti-inflammatory actions of tocopherols in mice and determined whether the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is involved in these activities. A mixture of tocopherols (γ-TmT) that is rich in γ-tocopherol was used. Nrf2 knockout (Nrf2 -/-) and wild-type mice were maintained on 0.03, 0.1, or 0.3% γ-TmT-enriched diet starting 2 weeks before the administration of dextran sulfate sodium (DSS) in drinking water (for 1 week, to induce colonic inflammation), until the termination of the experiment at 3 days after the DSS treatment. Dietary γ-TmT dose dependently lowered the levels of 8-oxo-deoxyguanosine, nitrotyrosine, inflammation index, and leukocyte infiltration in colon tissues, as well as 8-isoprostane and prostaglandin E2 in the serum, in both Nrf2 (-/-) and wild-type mice. No significant difference on the inhibitory actions of γ-TmT between the Nrf2 (-/-) and the wild-type mice was observed. The γ-TmT treatment significantly increased the serum levels of γ- and δ-tocopherols. Interestingly, the serum levels of tocopherol metabolites, specifically the γ- and δ-forms of carboxymethylbutyl hydroxychroman and carboxyethyl hydroxychroman, in Nrf2 (-/-) mice were significantly higher than those in wild-type mice. These findings suggest that the antioxidant and anti-inflammatory activities of γ-TmT in the colon are mostly due to the direct action of tocopherols in trapping reactive oxygen and nitrogen species, independent of the antioxidant enzymes and anti-inflammatory proteins that are regulated by Nrf2; however, Nrf2 knockout appears to affect the serum levels of tocopherol metabolites. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Chromatography, High Pressure Liquid; Colon; Deoxyguanosine; Dinoprost; Drinking Water; Female; gamma-Tocopherol; Immunoenzyme Techniques; Inflammation; Leukocyte Common Antigens; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-E2-Related Factor 2; Oxidative Stress; Tyrosine | 2012 |
The anti-inflammatory effects of methane.
Gastrointestinal methane generation has been demonstrated in various stress conditions, but it is not known whether nonasphyxiating amounts have any impact on the mammalian pathophysiology. We set out to characterize the effects of exogenous methane administration on the process of inflammatory events arising after reoxygenation in a large animal model of ischemia-reperfusion.. A randomized, controlled in vivo animal study.. A university research laboratory.. Inbred beagle dogs (12.7 6 2 kg).. Sodium pentobarbital-anesthetized animals were randomly assigned to sham-operated or ischemia-reperfusion groups, where superior mesenteric artery occlusion was maintained for 1 hr and the subsequent reperfusion was monitored for 3 hrs. For 5 mins before reperfusion, the animals were mechanically ventilated with normoxic artificial air with or without 2.5% methane. Biological responses to methane-oxygen respirations were defined in pilot rat studies and assay systems were used with xanthine oxidase and activated canine granulocytes to test the in vitro bioactivity potential of different gas concentrations.. The macrohemodynamics and small intestinal pCO(2) gap changes were recorded and peripheral blood samples were taken for plasma nitrite/nitrate and myeloperoxidase analyses. Tissue superoxide and nitrotyrosine levels and myeloperoxidase activity changes were determined in intestinal biopsy samples; structural mucosal damage was measured by hematoxylin and eosin staining. Methane inhalation did not influence the macrohemodynamics but significantly reduced the magnitude of the tissue damage and the intestinal pCO(2) gap changes after reperfusion. Furthermore, the plasma and mucosal myeloperoxidase activity and the intestinal superoxide and nitrotyrosine levels were reduced, whereas the plasma nitrite/nitrate concentrations were increased. Additionally, methane effectively and specifically inhibited leukocyte activation in vitro.. These data demonstrate the anti-inflammatory profile of methane. The study provides evidence that exogenous methane modulates leukocyte activation and affects key events of ischemia-reperfusion-induced oxidative and nitrosative stress and is therefore of potential therapeutic interest in inflammatory pathologies. Topics: Administration, Inhalation; Animals; Blood Gas Analysis; Dogs; Granulocytes; Inflammation; Intestinal Diseases; Intestinal Mucosa; Intestines; Male; Methane; Rats, Sprague-Dawley; Reactive Oxygen Species; Reperfusion Injury; Superoxides; Tyrosine | 2012 |
The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke.
We recently demonstrated that limb remote preconditioning (LRP) protects against focal ischemia measured 2 days post-stroke. Here, we studied whether LRP provides long-term protection and improves neurological function. We also investigated whether LRP transmits its protective signaling via the afferent nerve pathways from the preconditioned limb to the ischemic brain and whether inflammatory factors are involved in LRP, including the novel galectin-9/Tim-3 inflammatory cell signaling pathway, which induces cell death in lymphocytes. LRP in the left hind femoral artery was performed immediately before stroke. LRP reduced brain injury size both at 2 days and 60 days post-stroke and improved behavioral outcomes for up to 2 months. The sensory nerve inhibitors capsaicin and hexamethonium, a ganglion blocker, abolished the protective effects of LRP. In addition, LRP inhibited edema formation and blood-brain barrier (BBB) permeability measured 2 days post-stroke. Western blot and immunostaining analysis showed that LRP inhibited protein expression of both galectin-9 and T-cell immunoglobulin domain and mucin domain 3 (Tim-3), which were increased after stroke. In addition, LRP decreased iNOS and nitrotyrosine protein expression after stroke. In conclusion, LRP executes long-term protective effects against stroke and may block brain injury by inhibiting activities of the galectin-9/Tim-3 pathway, iNOS, and nitrotyrosine. Topics: Animals; Extremities; Galectins; Inflammation; Ischemic Preconditioning; Nitric Oxide Synthase Type II; Rats; Receptors, Cell Surface; Stroke; Time Factors; Tyrosine | 2012 |
Inflammation-associated nitrotyrosination affects TCR recognition through reduced stability and alteration of the molecular surface of the MHC complex.
Nitrotyrosination of proteins, a hallmark of inflammation, may result in the production of MHC-restricted neoantigens that can be recognized by T cells and bypass the constraints of immunological self-tolerance. Here we biochemically and structurally assessed how nitrotyrosination of the lymphocytic choriomeningitis virus (LCMV)-associated immunodominant MHC class I-restricted epitopes gp33 and gp34 alters T cell recognition in the context of both H-2D(b) and H-2K(b). Comparative analysis of the crystal structures of H-2K(b)/gp34 and H-2K(b)/NY-gp34 demonstrated that nitrotyrosination of p3Y in gp34 abrogates a hydrogen bond interaction formed with the H-2K(b) residue E152. As a consequence the conformation of the TCR-interacting E152 was profoundly altered in H-2K(b)/NY-gp34 when compared to H-2K(b)/gp34, thereby modifying the surface of the nitrotyrosinated MHC complex. Furthermore, nitrotyrosination of gp34 resulted in structural over-packing, straining the overall conformation and considerably reducing the stability of the H-2K(b)/NY-gp34 MHC complex when compared to H-2K(b)/gp34. Our structural analysis also indicates that nitrotyrosination of the main TCR-interacting residue p4Y in gp33 abrogates recognition of H-2D(b)/gp33-NY complexes by H-2D(b)/gp33-specific T cells through sterical hindrance. In conclusion, this study provides the first structural and biochemical evidence for how MHC class I-restricted nitrotyrosinated neoantigens may enable viral escape and break immune tolerance. Topics: Amino Acids; Animals; Crystallography, X-Ray; H-2 Antigens; Inflammation; Lymphocytic choriomeningitis virus; Major Histocompatibility Complex; Mice; Models, Molecular; Peptides; Protein Conformation; Protein Stability; Receptors, Antigen, T-Cell; Tyrosine; Viral Proteins | 2012 |
ACE2 deficiency enhances angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production.
Inflammation and oxidative stress play a crucial role in angiotensin (Ang) II-mediated vascular injury. Angiotensin-converting enzyme 2 (ACE2) has recently been identified as a specific Ang II-degrading enzyme but its role in vascular biology remains elusive. We hypothesized that loss of ACE2 would facilitate Ang II-mediated vascular inflammation and peroxynitrite production. 10-week wildtype (WT, Ace2(+/y)) and ACE2 knockout (ACE2KO, Ace2(-/y)) mice received with mini-osmotic pumps with Ang II (1.5 mg.kg⁻¹.d⁻¹) or saline for 2 weeks. Aortic ACE2 protein was obviously reduced in WT mice in response to Ang II related to increases in profilin-1 protein and plasma levels of Ang II and Ang-(1-7). Loss of ACE2 resulted in greater increases in Ang II-induced mRNA expressions of inflammatory cytokines monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β, and IL-6 without affecting tumor necrosis factor-α in aortas of ACE2KO mice. Furthermore, ACE2 deficiency led to greater increases in Ang II-mediated profilin-1 expression, NADPH oxidase activity, and superoxide and peroxynitrite production in the aortas of ACE2KO mice associated with enhanced phosphorylated levels of Akt, p70S6 kinase, extracellular signal-regulated kinases (ERK1/2) and endothelial nitric oxide synthase (eNOS). Interestingly, daily treatment with AT1 receptor blocker irbesartan (50 mg/kg) significantly prevented Ang II-mediated aortic profilin-1 expression, inflammation, and peroxynitrite production in WT mice with enhanced ACE2 levels and the suppression of the Akt-ERK-eNOS signaling pathways. Our findings reveal that ACE2 deficiency worsens Ang II-mediated aortic inflammation and peroxynitrite production associated with the augmentation of profilin-1 expression and the activation of the Akt-ERK-eNOS signaling, suggesting potential therapeutic approaches by enhancing ACE2 action for patients with vascular diseases. Topics: Angiotensin II; Angiotensin-Converting Enzyme 2; Animals; Aorta; Blotting, Western; Chemokine CCL2; Ethidium; Inflammation; Interleukin-1beta; Interleukin-6; Mice; Mice, Knockout; NADPH Oxidases; Peptidyl-Dipeptidase A; Peroxynitrous Acid; Profilins; Real-Time Polymerase Chain Reaction; Tyrosine | 2012 |
Diabetes exacerbates retinal oxidative stress, inflammation, and microvascular degeneration in spontaneously hypertensive rats.
Hypertension and diabetes are known risk factors for retinal microvascular damage. However, the combined effects of diabetes with early and established stages of hypertension on retinal microvascular degeneration remain incompletely understood.. Male spontaneously hypertensive rats (SHR) were compared to SHR with streptozotocin-induced diabetes (SHR+D) for 6 or 10 weeks and Wistar rats as controls.. Hypertension alone (the SHR group) or in combination with diabetes (the SHR+D group) for 6 weeks induced additive increases in total retinal cell death, compared to the Wistar controls. This increase was associated with significant increases in phosphorylated-Jun N-terminal kinase (pJNK) activation, phosphorylated-Akt inhibition, plasma and retinal lipid peroxides, and soluble intracellular adhesion molecule-1 (sICAM-1) levels. After 10 weeks, a similar trend was still observed in retinal nitrotyrosine, nuclear factor kappaB p65, and tumor necrosis factor-α expression, associated with exacerbated pJNK activation and formation of acellular capillaries.. In conclusion, combining diabetes and hypertension-potentiated retinal oxidative/inflammatory stress promoted imbalance between the JNK stress and survival Akt pathways resulting in accelerated retinal cell death and acellular capillary formation. Topics: Animals; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Gene Expression; Hypertension; Inflammation; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Male; MAP Kinase Kinase 4; NF-kappa B; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Retina; Retinal Neovascularization; Tumor Necrosis Factor-alpha; Tyrosine | 2012 |
Enhancement of 26S proteasome functionality connects oxidative stress and vascular endothelial inflammatory response in diabetes mellitus.
Although the connection of oxidative stress and inflammation has been long recognized in diabetes mellitus, the underlying mechanisms are not fully elucidated. This study defined the role of 26S proteasomes in promoting vascular inflammatory response in early diabetes mellitus.. The 26S proteasome functionality, markers of autophagy, and unfolded protein response were assessed in (1) cultured 26S proteasome reporter cells and endothelial cells challenged with high glucose, (2) transgenic reporter (Ub(G76V)-green fluorescence protein) and wild-type (C57BL/6J) mice rendered diabetic, and (3) genetically diabetic (Akita and OVE26) mice. In glucose-challenged cells, and also in aortic, renal, and retinal tissues from diabetic mice, enhanced 26S proteasome functionality was observed, evidenced by augmentation of proteasome (chymotrypsin-like) activities and reduction in 26S proteasome reporter proteins, accompanied by increased nitrotyrosine-containing proteins. Also, whereas inhibitor of the nuclear factor κ-light-chain-enhancer of activated B cells α proteins were decreased, an increase was found in nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) nucleus translocation, which enhanced the NF-κB-mediated proinflammatory response, without affecting markers of autophagy or unfolded protein response. Importantly, the alterations were abolished by MG132 administration, small interfering RNA knockdown of PA700 (proteasome activator protein complex), or superoxide scavenging in vivo.. Early hyperglycemia enhances 26S proteasome functionality, not autophagy or unfolded protein response, through peroxynitrite/superoxide-mediated PA700-dependent proteasomal activation, which elevates NF- ĸB-mediated endothelial inflammatory response in early diabetes mellitus. Topics: Animals; Blood Glucose; Cells, Cultured; Cysteine Proteinase Inhibitors; Diabetes Mellitus, Experimental; Endothelium, Vascular; Enzyme Activation; Free Radical Scavengers; Gene Expression Regulation; Green Fluorescent Proteins; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Inflammation Mediators; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; NF-kappa B; Oxidative Stress; Peroxynitrous Acid; Proteasome Endopeptidase Complex; Proteasome Inhibitors; RNA Interference; Time Factors; Tyrosine; Ubiquitination | 2012 |
Acute O-GlcNAcylation prevents inflammation-induced vascular dysfunction.
Acute increases in cellular protein O-linked N-acetyl-glucosamine (O-GlcNAc) modification (O-GlcNAcylation) have been shown to have protective effects in the heart and vasculature. We hypothesized that d-glucosamine (d-GlcN) and Thiamet-G, two agents that increase protein O-GlcNAcylation via different mechanisms, inhibit TNF-α-induced oxidative stress and vascular dysfunction by suppressing inducible nitric oxide (NO) synthase (iNOS) expression. Rat aortic rings were incubated for 3h at 37°C with d-GlcN or its osmotic control l-glucose (l-Glc) or with Thiamet-G or its vehicle control (H(2)O) followed by the addition of TNF-α or vehicle (H(2)O) for 21 h. After incubation, rings were mounted in a myograph to assess arterial reactivity. Twenty-four hours of incubation of aortic rings with TNF-α resulted in 1) a hypocontractility to 60 mM K(+) solution and phenylephrine, 2) blunted endothelium-dependent relaxation responses to ACh and substance P, and 3) unaltered relaxing response to the Ca(2+) ionophore A-23187 and the NO donor sodium nitroprusside compared with aortic rings cultured in the absence of TNF-α. d-GlcN and Thiamet-G pretreatment suppressed the TNF-α-induced hypocontractility and endothelial dysfunction. Total protein O-GlcNAc levels were significantly higher in aortic segments treated with d-GlcN or Thiamet-G compared with controls. Expression of iNOS protein was increased in TNF-α-treated rings, and this was attenuated by pretreatment with either d-GlcN or Thiamet-G. Dense immunostaining for nitrotyrosylated proteins was detected in the endothelium and media of the aortic wall, suggesting enhanced peroxynitrite production by iNOS. These findings demonstrate that acute increases in protein O-GlcNAcylation prevent TNF-α-induced vascular dysfunction, at least in part, via suppression of iNOS expression. Topics: Acetylglucosamine; Acylation; Animals; Aorta, Thoracic; Aortic Diseases; beta-N-Acetylhexosaminidases; Dose-Response Relationship, Drug; Enzyme Inhibitors; Immunohistochemistry; Inflammation; Inflammation Mediators; Male; Myography; Nitric Oxide Synthase Type II; Oxidative Stress; Peroxynitrous Acid; Protein Processing, Post-Translational; Rats; Rats, Sprague-Dawley; Time Factors; Tissue Culture Techniques; Tumor Necrosis Factor-alpha; Tyrosine; Vasoconstriction; Vasoconstrictor Agents; Vasodilation; Vasodilator Agents | 2012 |
[Characterization of the antiinflammatory properties of methane inhalation during ischaemia-reperfusion].
Gastrointestinal methane generation has been demonstrated in various conditions, but it is not known whether it has any impact on the mammalian physiology or pathophysiology. Our aim was to characterize the effects of exogenous methane on the process of inflammatory events induced by reoxygenation in a canine model of ischemia-reperfusion.. Sodium pentobarbital-anesthetized inbred beagle dogs (n = 18) were randomly assigned to sham-operated or ischemia-reperfusion (I/R) groups. I/R was induced by occluding the superior mesenteric artery for 1 h, and the subsequent reperfusion was monitored for 3 h. For 5 min before reperfusion, the animals were mechanically ventilated with normoxic artificial air with or without 2.5% methane. The macrohemodynamics and small intestinal pCO2 gap changes were recorded and tissue superoxide and nitrotyrosine levels and myeloperoxidase activity changes were determined in intestinal biopsy samples. Structural mucosal damage was measured via light microscopy and HE staining.. Methane inhalation positively influenced the macrohemodynamic changes, significantly reduced the intestinal pCO2 gap changes and the magnitude of the tissue damage after reperfusion. Further, the intestinal myeloperoxidase activity, the superoxide and nitrotyrosine levels were reduced.. These data demonstrate the anti-inflammatory profile of methane. The study provides evidence that exogenous methane modulates leukocyte activation and affects key events of I/R-induced oxidative and nitrosative stress. Topics: Administration, Inhalation; Animals; Anti-Inflammatory Agents; Biomarkers; Carbon Dioxide; Disease Models, Animal; Dogs; Hemodynamics; Inflammation; Intestine, Small; Leukocytes; Methane; Peroxidase; Random Allocation; Reperfusion Injury; Superoxides; Tyrosine | 2012 |
Changes in microvascular reactivity after cardiopulmonary bypass in patients with poorly controlled versus controlled diabetes.
We investigated the effects of cardiopulmonary bypass (CPB) on peripheral arteriolar reactivity and associated signaling pathways in poorly controlled (UDM), controlled (CDM), and case-matched nondiabetic (ND) patients undergoing coronary artery bypass grafting (CABG).. Skeletal muscle arterioles were harvested before and after CPB from the UDM patients (hemoglobin A1c [HbA1c]=9.0 ± 0.3), the CDM patients (HbA1c=6.3 ± 0.15), and the ND patients (HbA1c=5.2 ± 0.1) undergoing CABG surgery (n=10/group). In vitro relaxation responses of precontracted arterioles to endothelium-dependent vasodilators adenosine 5'-diphosphate (ADP) and substance P and the endothelium-independent vasodilator sodium nitroprusside (SNP) were examined. The baseline responses to ADP, substance P, and SNP of arterioles from the UDM patients were decreased as compared with microvessels from the ND or CDM patients (P<0.05). The post-CPB relaxation responses to ADP and substance P were significantly decreased in all 3 groups compared with pre-CPB responses (P<0.05). However, these decreases were more pronounced in the UDM group (P<0.05). The post-CPB response to SNP was significantly decreased only in the UDM group, not in the other 2 groups compared with pre-CPB. The expression of protein kinase C (PKC)-α, PKC-β, protein oxidation, and nitrotyrosine in the skeletal muscle were significantly increased in the UDM group as compared with those of ND or CDM groups (P<0.05).. Poorly controlled diabetes results in impaired arteriolar function before and after CPB. These alterations are associated with the increased expression/activation of PKC-α and PKC-β and enhanced oxidative and nitrosative stress. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine Diphosphate; Aged; Arterioles; Cardiopulmonary Bypass; Coronary Artery Bypass; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Type 2; Disease Susceptibility; Endothelium, Vascular; Enzyme Induction; Female; Gene Expression Regulation; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Inflammation; Male; Microcirculation; Middle Aged; Muscle, Skeletal; Nitroprusside; Phosphorylation; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-akt; Substance P; Tyrosine; Vasoconstriction; Vasodilator Agents | 2012 |
INF-β1b therapy modulates L-arginine and nitric oxide metabolism in patients with relapse remittent multiple sclerosis.
The scope of this study is the examination of NO(2)+NO(3), 3-nitrotyrosine (3-NT), S-nitrosothiols (RSNO), arginase activity and asymmetric (ADMA) and symmetric (SDMA) dimethyl-L-arginine concentrations in plasma of MS patients during interferon-β1b therapy.. The study population included 15 (12 women, 3 men) untreated MS patients and 12 (10 women, 2 men) interferon-β1b treated MS patients with clinically definite relapsing MS (McDonalds criteria) for at least 1 year and a baseline EDSS score of 1.0 to 3.5 inclusive. Patients were treated with 250 μg IU interferon-β1b s.c. every second day during 30 months. The disease course was evaluated using correlations between baseline EDSS score and relapse rates in both groups.. During interferon-β1b treatment, EDSS scores in treated patients were decreased compared to untreated ones - after 18 and 30 months (p<0.05). In interferon-β1b treated MS patients, NO(2)+NO(3), 3-NT and RSNO plasma concentrations were significantly lower (p<0.05), while arginase activity, ADMA and SDMA levels were significantly increased (p<0.05) during the therapy, compared to the baseline levels in treated patients.. The investigated parameters may be the new biomarkers, providing information for the therapeutic approach and valuable in clinical monitoring. Topics: Adult; Arginase; Arginine; Biomarkers; Drug Monitoring; Female; Follow-Up Studies; Humans; Inflammation; Interferon beta-1b; Interferon-beta; Male; Middle Aged; Multiple Sclerosis, Relapsing-Remitting; Nitrates; Nitric Oxide; Nitrites; Nitroso Compounds; Severity of Illness Index; Sulfhydryl Compounds; Tyrosine; Young Adult | 2012 |
Ghrelin suppresses inflammation and neuronal nitric oxide synthase in focal cerebral ischemia via the vagus nerve.
The pathogenesis of stroke involves inflammation, apoptosis, and excitotoxicity, which is mediated in part by neuronal NO synthase (nNOS) activation. Ghrelin, an endogenous 28-amino acid peptide, is shown to exert antiapoptotic and anti-inflammatory properties. However, the effect of ghrelin in permanent focal cerebral ischemia and the role of the vagus nerve in its action remain unknown. To study this, male adult Sprague-Dawley rats underwent right-sided permanent middle cerebral artery occlusion (MCAO) with or without prior bilateral truncal vagotomy. This was followed by infusion of 4 nmol human ghrelin as treatment or saline as vehicle. Neurological deficit was assessed at 24 h after MCAO. Rats were killed thereafter, and brains were rapidly removed and analyzed for infarct size, markers of inflammation, excitotoxicity, and apoptosis. Compared with vehicle treatment, human ghrelin treatment in vagus nerve-intact rats after MCAO showed marked reduction in neurological deficit by 57% and infarct size by 25%. Middle cerebral artery occlusion resulted in increases in cerebral TNF-α, IL-6, neutrophil trafficking, matrix metalloproteinase 9 and nNOS gene expression, nitrotyrosine, and apoptosis. Human ghrelin treatment in vagus nerve-intact rats significantly decreased the above measurements. Human ghrelin treatment also improved 7-day survival and significantly decreased neurological deficit over the entire 7 days after MCAO in vagus nerve-intact rats compared with vehicle. Prior vagotomy, however, blunted human ghrelin's neuroprotective effects on neurological deficit, infarct size, TNF-α, neutrophil trafficking, nitrotyrosine, and apoptosis. Human ghrelin is thus a neuroprotective agent that inhibits inflammation, nNOS activity, and apoptosis in focal cerebral ischemia through a vagal pathway. Topics: Animals; Apoptosis; Brain Ischemia; Ghrelin; Humans; Immunohistochemistry; Inflammation; Interleukin-6; Male; Matrix Metalloproteinase 9; Neutrophils; Nitric Oxide Synthase Type I; Peroxidase; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; Tumor Necrosis Factor-alpha; Tyrosine; Vagotomy; Vagus Nerve | 2011 |
Neuroprotective effects of almond skins in experimental spinal cord injury.
Functional deficits following spinal cord injury (SCI) arise from both mechanical injury and from secondary tissue reactions involving inflammation. Natural almond skins (NS) were tested to evaluate anti-inflammatory effects on an animal model of SCI.. SCI was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. In the present study, to elucidate whether the protective effects of NS are related to the total phenolic content, we also investigated the effect of a blanched (BS) almond skins (industrially obtained by removing bran from the nut) in SCI. NS and BS (30 mg/kg respectively) were administered per os, 1 h and 6 h, after SCI.. SCI in mice resulted in severe injury characterized by edema, tissue damage, production of inflammatory mediators and apoptosis (measured by Bax, Bcl-2 and Tunel assay). NS treatment, 1 and 6 h after SCI, reduced all parameters of inflammation as neutrophil infiltration, NF-κB activation, PAR formation, iNOS expression and apoptosis. However, treatment with BS did not exert any protective effect.. Our results suggest that NS treatment, reducing the development of inflammation and tissue injury, may be useful in the treatment of SCI. Topics: Analysis of Variance; Animals; Anti-Inflammatory Agents; Apoptosis; Disease Models, Animal; Inflammation; Lipid Peroxidation; Male; Mice; Neuroprotective Agents; Neutrophil Infiltration; NF-kappa B; Plant Extracts; Plant Structures; Prunus; Spinal Cord Injuries; Tyrosine | 2011 |
8-oxo-2'-deoxyguanosine suppresses allergy-induced lung tissue remodeling in mice.
We previously reported that 8-oxo-2'-deoxyguanosine (8-oxo-dG) suppressed airway hyperresponsiveness and allergy-associated immune responses in ovalbumin-induced allergic mice by inactivating Rac. In the present study, 8-oxo-dG was investigated for its suppression of inflammation and remodeling in lung tissues induced by allergic reaction in mice. Mice were sensitized and challenged with ovalbumin without or with oral administration of 8-oxo-dG. The mice without 8-oxo-dG administration showed the following inflammatory and airway remodeling signs: infiltration of inflammatory cells into peribronchial area, hyperplasia of mucus-secreting goblet cells in bronchial walls, increase of expressions of Muc5ac and vascular cell adhesion molecule (VCAM)-1, collagen deposition and protein expression, and matrix metalloproteinase (MMP)-2/-9 expressions. We also observed an increase of various inflammation-mediating proteins, namely IL-4, IL-5, IL-8, IL-13, TNF-α and IFN-γ, and activation of STAT1 and NF-κB. Production of reactive oxygen species and nitric oxide (NO(.)) was increased as indicated by a dramatic increase in formation of nitro-tyrosine. Importantly, Rac1 and 2 were also markedly activated. However, 8-oxo-dG suppressed all these inflammatory and tissue remodeling signs as well as activation of Rac1 and 2. These results indicate that 8-oxo-dG can inhibit allergy-induced inflammation and remodeling in airway and lung tissues through Rac inactivation. Topics: 8-Hydroxy-2'-Deoxyguanosine; Airway Remodeling; Animals; Collagen; Cytokines; Deoxyguanosine; Enzyme Activation; Female; Gene Expression Regulation; Goblet Cells; Hyperplasia; Hypersensitivity; Immunosuppressive Agents; Inflammation; Lung; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mice; Mice, Inbred BALB C; Mucin 5AC; NF-kappa B; rac GTP-Binding Proteins; RNA, Messenger; STAT1 Transcription Factor; Tyrosine; Vascular Cell Adhesion Molecule-1 | 2011 |
Irreversible inflammation is associated with decreased levels of the alpha1-, beta1-, and alpha2-subunits of sGC in human odontoblasts.
The nitric oxide (NO) receptor enzyme soluble guanylate cyclase (sGC) contains one prosthetic heme group as an αβ heterodimer, and two heterodimer isoforms (α(1)β(1), α(2)β(1)) were characterized to have enzyme activity. To test the irreversible inflammation-dependent regulation of sGC in odontoblasts, we incubated decalcified frozen sections of healthy and inflamed human third molars with antibodies against β-actin, nitrotyrosine, inducible nitric oxide synthase (iNOS), α(1)-, β(1)-, and α(2)-subunits of sGC and analyzed them at protein levels by quantitative immunohistochemistry. The irreversible inflammation induced an increase in the signal intensities for nitrotyrosine and iNOS and a decrease for the α(1)-, β(1)-, and α(2)-subunits of sGC in odontoblasts. Inflammatory mediators, reactive oxygen, and nitrogen species may impair the expression of the α(1)-, β(1)-, and α(2)-subunits in odontoblasts. The decrease of sGC at the protein level in inflamed odontoblasts is compatible with a critical role for sGC to mediate biological effects of NO in health. Topics: Actins; Adolescent; Adult; CD11b Antigen; CD3 Complex; Dental Caries; Dental Pulp; Dentin; Guanylate Cyclase; Humans; Immunohistochemistry; Inflammation; Inflammation Mediators; Isoenzymes; Microscopy, Confocal; Nitric Oxide Synthase Type II; Odontoblasts; Pulpitis; Reactive Nitrogen Species; Reactive Oxygen Species; Receptors, Cytoplasmic and Nuclear; Soluble Guanylyl Cyclase; Tyrosine; Young Adult | 2011 |
Low-dose 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine causes inflammatory activation of astrocytes in nuclear factor-κB reporter mice prior to loss of dopaminergic neurons.
Neuroinflammation is implicated in the progression of numerous disease states of the CNS, but early inflammatory signaling events in glial cells that may predispose neurons to injury are not easily characterized in vivo. To address this question, we exposed transgenic mice expressing a nuclear factor-κB (NF-κB)-driven enhanced green fluorescent protein (EGFP) reporter construct to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and examined inflammatory activation of astrocytes in relation to neurobehavioral and neuropathological outcomes. The highest dose of MPTP (60 mg/kg total dose) caused a decrease in locomotor activity and a reduction in stride length. No significant loss of dopaminergic neurons in the substantia nigra was apparent at any dose. In contrast, expression of tyrosine hydroxylase in striatal fibers was reduced at 60 mg/kg MPTP, as were levels of dopamine and DOPAC. Colocalized expression of EGFP and inducible nitric oxide synthase (NOS2) occurred in astrocytes at 30 and 60 mg/kg MPTP and was associated with increased protein nitration in nigral dopaminergic neurons. Inhibition of NF-κB in primary astrocytes by expression of mutant IκBα suppressed expression of NOS2 and protected cocultured neurons from astrocyte-mediated apoptosis. These data indicate that inflammatory activation of astrocytes and enhanced nitrosative stress occurs at low doses of MPTP prior to loss of dopaminergic neurons. NF-κB-mediated expression of NOS2 appears to be a sensitive indicator of neuroinflammation that correlates with MPTP-induced neurochemical and neurobehavioral deficits prior to loss of dopaminergic neurons in the subtantia nigra. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Analysis of Variance; Animals; Astrocytes; Cell Death; Coculture Techniques; Disease Models, Animal; Dopamine; Dose-Response Relationship, Drug; Glial Fibrillary Acidic Protein; Green Fluorescent Proteins; Hindlimb; Inflammation; Male; Mice; Mice, Transgenic; Motor Activity; Neurons; Neurotoxins; NF-kappaB-Inducing Kinase; Nitric Oxide Synthase Type II; Protein Serine-Threonine Kinases; Substantia Nigra; Tyrosine; Tyrosine 3-Monooxygenase | 2011 |
Glutamine treatment attenuates the development of organ injury induced by zymosan administration in mice.
Glutamine is the most abundant amino acid in the bloodstream. It is important in nucleotide synthesis, is anti-catabolic, has anti-oxidant properties via metabolism to glutathione, may enhance immune responsiveness and possesses immunoregulatory functions. Moreover, it reduces atrophy of intestinal mucosa in animals on total parenteral nutrition and prevents intestinal mucosal injury accompanying small bowel transplantation, chemotherapy and radiation. In the present study, we investigated the effects of glutamine on development of non-septic shock caused by zymosan. Mice received either zymosan (500 mg/kg, administered i.p., as a suspension in saline) or vehicle (saline). Glutamine (1.5 mg/kg i.p.) was administered 1 and 6h after zymosan administration. Organ failure and systemic inflammation in mice were assessed 18 h after administration of zymosan and/or glutamine. Glutamine-treatment reduced the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan-injection and also attenuated the pancreatic and gut injury. Inflammatory and apoptotic parameters were evaluated to better investigate the effects of the glutamine-administration. So, by immunohistochemical analysis and in vitro assays, we have clearly showed that glutamine reduces: 1) the histological damage in pancreas and gut; 2) the inducible nitric oxide synthase expression; 3) nitrotyrosine and poly (ADP-ribose) formation; 4) TNF-α and IL-1β tissue and plasma levels; 5) FasL localization; and 6) alteration of the balance between Bax and Bcl-2. In addition, at the end of the observation period (7 days), zymosan causes severe illness in the mice characterized by a systemic toxicity, significant loss of body weight and mortality. Glutamine-treatment significantly reduced all these parameters. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Body Weight; Cytokines; Enzyme Activation; Fas Ligand Protein; Gene Expression Regulation; Glutamine; Inflammation; Lipid Peroxidation; Male; Mice; Multiple Organ Failure; Neutrophil Infiltration; Nitric Oxide; Peritoneal Cavity; Poly Adenosine Diphosphate Ribose; Poly(ADP-ribose) Polymerases; Protein Transport; Proto-Oncogene Proteins c-bcl-2; Tyrosine; Zymosan | 2011 |
High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production.
Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H(2)O(2) emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases. Topics: Adaptation, Physiological; Animals; Diet; Dietary Fats; Energy Intake; Energy Metabolism; Free Radicals; Hydrogen Peroxide; Immunohistochemistry; Inflammation; Kidney; Kidney Glomerulus; Male; Mice; Mice, Inbred C57BL; Microscopy, Confocal; Mitochondria; NADPH Oxidase 4; NADPH Oxidases; Nitric Oxide Synthase Type II; Oxidative Stress; Reactive Oxygen Species; Subcellular Fractions; Superoxide Dismutase; Tyrosine | 2011 |
Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity.
Up-regulation of thioredoxin interacting protein (TXNIP), an endogenous inhibitor of thioredoxin (Trx), compromises cellular antioxidant and anti-apoptotic defences and stimulates pro-inflammatory cytokines expression, implying a role for TXNIP in apoptosis. Here we have examined the causal role of TXNIP expression in mediating retinal neurotoxicity and assessed the neuroprotective actions of verapamil, a calcium channel blocker and an inhibitor of TXNIP expression.. Retinal neurotoxicity was induced by intravitreal injection of NMDA in Sprague-Dawley rats, which received verapamil (10 mg·kg(-1), p.o.) or vehicle. Neurotoxicity was examined by terminal dUTP nick-end labelling assay and ganglion cell count. Expression of TXNIP, apoptosis signal-regulating kinase 1 (ASK-1), NF-κB, p38 MAPK, JNK, cleaved poly-ADP-ribose polymerase (PARP), caspase-3, nitrotyrosine and 4-hydroxy-nonenal were examined by Western and slot-blot analysis. Release of TNF-α and IL-1β was examined by elisa.. NMDA injection enhanced TXNIP expression, decreased Trx activity, causing increased oxidative stress, glial activation and release of TNF-α and IL-1β. Enhanced TXNIP expression disrupted Trx/ASK-1 inhibitory complex leading to release of ASK-1 and activation of the pro-apoptotic p38 MAPK/JNK pathway, as indicated by cleaved PARP and caspase-3 expression. Treatment with verapamil blocked these effects.. Elevated TXNIP expression contributed to retinal neurotoxicity by three different mechanisms, inducing release of inflammatory mediators such as TNF-α and IL-1β, altering antioxidant status and disrupting the Trx-ASK-1 inhibitory complex leading to activation of the p38 MAPK/JNK apoptotic pathway. Targeting TXNIP expression is a potential therapeutic target for retinal neurodegenerative disease. Topics: Animals; Apoptosis; Carrier Proteins; Caspase 3; Caspase Inhibitors; Cell Cycle Proteins; Eye Diseases; Inflammation; Interleukin-1beta; Male; MAP Kinase Kinase 4; MAP Kinase Kinase Kinase 5; Neuroglia; Neuroprotective Agents; NF-kappa B; Oxidative Stress; p38 Mitogen-Activated Protein Kinases; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Rats; Rats, Sprague-Dawley; Retina; Retinal Ganglion Cells; Thioredoxins; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation; Verapamil | 2011 |
Loxin polymorphism is associated with increased resistin levels and with oxidative status.
We hypothesized that LOX-1 polymorphism may impact on inflammation and cardiovascular risk by modulating systemic resistin expression.. 276 men were randomly selected from a population-based cohort. Metabolic and inflammatory markers were evaluated at baseline and after 6-years follow-up, OLR1 (loxin) IVS4-14 A>G polymorphism was assessed.. Mean plasma resistin and nitrotyrosine values were significantly higher, and TAS was significantly lowered in homozygous for the G allele. The G allele was significantly and directly associated with resistin and nitrotyrosine values.. Enhanced oxidized-LDL uptake by LOX-1 G-allele carriers is associated with increased pro-oxidant status and resistin levels, suggesting a major uptake of ox-LDL by macrophages, smooth muscle cells, and monocytes. Topics: Antioxidants; C-Reactive Protein; Cardiovascular Diseases; Cholesterol, HDL; Cohort Studies; Cytokines; Gene Frequency; Homozygote; Humans; Inflammation; Lipid Metabolism; Lipoproteins, LDL; Male; Middle Aged; Polymorphism, Genetic; Polymorphism, Single Nucleotide; Resistin; Scavenger Receptors, Class E; Triglycerides; Tyrosine | 2011 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |
Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy.
Cisplatin is an important chemotherapeutic agent; however, its nephrotoxicity limits its clinical use. Enhanced inflammatory response and oxidative/nitrosative stress seem to play a key role in the development of cisplatin-induced nephropathy. Activation of cannabinoid-2 (CB(2)) receptors with selective agonists exerts anti-inflammatory and tissue-protective effects in various disease models. We have investigated the role of CB(2) receptors in cisplatin-induced nephrotoxicity using the selective CB(2) receptor agonist HU-308 and CB(2) knockout mice. Cisplatin significantly increased inflammation (leukocyte infiltration, CXCL1/2, MCP-1, TNFalpha, and IL-1beta levels) and expression of adhesion molecule ICAM-1 and superoxide-generating enzymes NOX2, NOX4, and NOX1 and enhanced ROS generation, iNOS expression, nitrotyrosine formation, and apoptotic and poly(ADP-ribose) polymerase-dependent cell death in the kidneys of mice, associated with marked histopathological damage and impaired renal function (elevated serum BUN and creatinine levels) 3 days after the administration of the drug. CB(2) agonist attenuated the cisplatin-induced inflammatory response, oxidative/nitrosative stress, and cell death in the kidney and improved renal function, whereas CB(2) knockouts developed enhanced inflammation and tissue injury. Thus, the endocannabinoid system, through CB(2) receptors, protects against cisplatin-induced kidney damage by attenuating inflammation and oxidative/nitrosative stress, and selective CB(2) agonists may represent a promising novel approach to preventing this devastating complication of chemotherapy. Topics: Animals; Antineoplastic Agents; Apoptosis; Cannabinoids; Caspases; Cisplatin; In Situ Nick-End Labeling; Inflammation; Kidney Diseases; Kidney Function Tests; Lipid Peroxidation; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidation-Reduction; Oxidative Stress; Peroxidase; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species; Receptor, Cannabinoid, CB2; Tyrosine | 2010 |
Chemical and immunochemical detection of 8-halogenated deoxyguanosines at early stage inflammation.
Myeloperoxidase (MPO) generates reactive halogenating species that can modify DNA. The aim of this study was to investigate the formation of 8-halogenated 2'-deoxyguanosines (8- halo-dGs) during inflammatory events. 8-Bromo-2'-dG (8-BrdG) and 8-chloro-2'-dG (8-CldG) were generated by treatment of MPO with hydrogen peroxide at physiological concentrations of Cl(-) and Br(-). The formation of 8-halo-dGs with other oxidative stress biomarkers in lipopolysaccharide-treated rats was assessed by liquid chromatography tandem mass spectrometry and immunohistochemistry using a novel monoclonal antibody (mAb8B3) to 8-BrdG-conjugated keyhole limpet hemocyanin. The antibody recognized both 8-BrdG and 8-CldG. In the liver of lipopolysaccharide-treated rats, immunostaining for 8-halo-dGs, halogenated tyrosines, and MPO were increased at 8 h, whereas those of 8-oxo-2'-dG (8-OxodG) and 3-nitrotyrosine were increased at 24 h. Urinary excretion of both 8-CldG and 8-BrdG was also observed earlier than those of 8-OxodG and modified tyrosines (3-nitrotyrosine, 3-chlorotyrosine, and 3- bromotyrosine). Moreover, the levels of the 8-halo-dGs in urine from human diabetic patients were 8-fold higher than in healthy subjects (n = 10, healthy and diabetic, p < 0.0001), whereas there was a moderate difference in 8-OxodG between the two groups (p < 0.001). Interestingly, positive mAb8B3 antibody staining was observed in liver tissue from hepatocellular carcinoma patients but not in liver tissue from human cirrhosis patients. These data suggest that 8-halo-dGs may be potential biomarkers of early inflammation. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antibodies, Monoclonal; Chromatography, Liquid; Deoxyguanosine; Female; Halogens; Inflammation; Lipopolysaccharides; Liver; Mass Spectrometry; Mice; Mice, Inbred C57BL; Peroxidase; Rats; Rats, Wistar; Time Factors; Tyrosine | 2010 |
Pyruvate-fortified fluid resuscitation improves hemodynamic stability while suppressing systemic inflammation and myocardial oxidative stress after hemorrhagic shock.
To determine whether controlled resuscitation with pyruvate-fortified Ringer's (PR) solution vs. conventional lactate Ringer's (LR) more effectively stabilizes mean arterial pressure (MAP) and suppresses myocardial inflammation postresuscitation.. Goats were hemorrhaged (255 +/- 22 ml) to lower MAP to 48 +/- 1 mmHg. Next, the right femoral vessels were occluded for 90 min to model tourniquet application. Beginning at 30 min occlusion, LR or PR was infused i.v. at 10 ml/min for 90 min. The femoral occlusions were released at 60 min infusion.. At 4 h postocclusion, MAP (mmHg) was increased in PR (59 +/- 4) vs. LR (47 +/- 3) resuscitated goats (p < 0.05). PR also more effectively augmented circulating HCO3 and total base excess. Nitrosative stress, detected in myocardium 4 h after LR resuscitation, was suppressed by PR. Finally, PR prevented the increase in circulating neutrophils that accompanied LR resuscitation.. Relative to LR, resuscitation with PR more effectively stabilized MAP, suppressed myocardial nitrosative stress and minimized systemic inflammation after hemorrhagic shock with hindlimb ischemia-reperfusion. Topics: Animals; Disease Models, Animal; Drug Combinations; Fluid Therapy; Goats; Hemodynamics; Inflammation; Infusions, Intravenous; Isotonic Solutions; Lactates; Leukocyte Count; Male; Myocardium; Neutrophils; Oxidative Stress; Pyruvic Acid; Resuscitation; Ringer's Lactate; Shock, Hemorrhagic; Treatment Outcome; Tyrosine | 2010 |
Red ginseng saponin extract attenuates murine collagen-induced arthritis by reducing pro-inflammatory responses and matrix metalloproteinase-3 expression.
Ginseng, the root of Panax ginseng C. A. MEYER, has been used as a food product and medicinal ingredient. In this study, we assessed the anti-arthritic effects of red ginseng saponin extract (RGSE), including ginsenosides Rg3, Rk1 and Rg5 as major components, on a murine type II collagen (CII)-induced arthritis (CIA), which is a valid animal model of human arthritis. Oral administration of RGSE at 10 mg/kg reduced the clinical arthritis score and paw swelling in the CIA mice, and inhibited joint space narrowing and histological arthritis, illustrating the severity of synovial hyperplasia, inflammatory cell infiltration, pannus formation, and erosion of cartilage. RGSE inhibited the expression of matrix metalloproteinase-3 and nitrotyrosine formation, and recovered the expression of superoxide dismutase in the joints of the CIA mice. Orally administered RGSE also reduced the levels of serum tumor necrosis factor-alpha and interleukin-1beta in the CIA mice. CII- or lipopolysaccharide-stimulated cytokine production, in addition to CII-specific proliferation, was reduced in the spleen cells of the RGSE-treated CIA mice, as compared with those from vehicle-treated CIA mice. Furthermore, RGSE administration protected against CIA-induced oxidative tissue damage by restoring the increased malondialdehyde levels and the decreased glutathione levels and catalase activities almost to control levels. Therefore, RGSE may be a beneficial supplement which can improve human arthritis. Topics: Animals; Antioxidants; Antirheumatic Agents; Arthritis, Experimental; Cartilage; Collagen Type II; Cytokines; Disease Models, Animal; Edema; Female; Ginsenosides; Hyperplasia; Inflammation; Interleukin-1beta; Joint Capsule; Joints; Lipopolysaccharides; Male; Malondialdehyde; Matrix Metalloproteinase 3; Mice; Mice, Inbred DBA; Mice, Inbred ICR; Oxidative Stress; Panax; Phytotherapy; Plant Extracts; Plant Roots; Spleen; Tumor Necrosis Factor-alpha; Tyrosine | 2010 |
Lack of inducible nitric oxide synthase does not prevent aging-associated insulin resistance.
Inducible nitric oxide synthase (iNOS) is involved in obesity-induced insulin resistance. Since aging is accompanied by increased iNOS expression, the effect of iNOS gene deletion on aging-associated insulin resistance was investigated in 7-month-old (adult) and 22-month-old (old) iNOS knockout and wild-type mice using the hyperinsulinemic-euglycemic clamp. While body weight and fat mass were increased, muscle mass was reduced with aging in wild-type mice. However, body composition was not changed with aging in iNOS knockout mice due to increased locomotor activity. NO metabolites in plasma, and protein levels of iNOS and nitrotyrosine in skeletal muscle increased with aging in wild-type mice. Deletion of iNOS gene attenuated NO metabolites and nitrotyrosine with aging in iNOS knockout mice. Glucose uptake in whole body and skeletal muscle was reduced with aging in both wild-type and iNOS knockout mice and there was no difference between two groups. Plasma level of tumor necrosis factor-alpha and gene expression of proinflammatory cytokines in peripheral tissues were increased with aging in both groups, and that was more heightened in iNOS knockout mice. These results suggest that lack of iNOS does not prevent aging-associated insulin resistance in mice and heightened production of proinflammatory cytokines may be involved. Topics: Adipose Tissue; Aging; Animals; Body Composition; Body Weight; Cytokines; Gene Deletion; Glucose Clamp Technique; Hyperinsulinism; Inflammation; Insulin Resistance; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Nitric Oxide Synthase Type II; Oxygen Consumption; Polymerase Chain Reaction; Tumor Necrosis Factor-alpha; Tyrosine | 2010 |
Resveratrol suppresses oxidative stress and inflammatory response in diethylnitrosamine-initiated rat hepatocarcinogenesis.
Hepatocellular carcinoma (HCC), one of the most frequent and deadliest cancers, has been increasing considerably in the United States. In the absence of a proven effective therapy for HCC, novel chemopreventive strategies are urgently needed to lower the current morbidity and mortality of HCC. Recently, we have reported that resveratrol, a compound present in grapes and red wine, significantly prevents diethylnitrosamine (DENA)-induced liver tumorigenesis in rats, although the mechanism of action is not completely understood. In the present study, we have examined the underlying mechanisms of resveratrol chemoprevention of hepatocarcinogenesis by investigating the effects of resveratrol on oxidative damage and inflammatory markers during DENA-initiated rat liver carcinogenesis. There was a significant increase in hepatic lipid peroxidation and protein oxidation in carcinogen control animals compared with their normal counterparts at the end of the study (20 weeks). Elevated expressions of inducible nitric oxide synthase and 3-nitrotyrosine were noticed in the livers of the same animals. Dietary resveratrol (50-300 mg/kg) administered throughout the study reversed all the aforementioned markers in a dose-responsive fashion in rats challenged with DENA. Resveratrol also elevated the protein and mRNA expression of hepatic nuclear factor E2-related factor 2 (Nrf2). Results of the present investigation provide evidence that attenuation of oxidative stress and suppression of inflammatory response mediated by Nrf2 could be implicated, at least in part, in the chemopreventive effects of this dietary agent against chemically induced hepatic tumorigenesis in rats. The outcome of this study may benefit the development of resveratrol in the prevention and intervention of human HCC. Topics: Animals; Antioxidants; Carcinogens; Chemical and Drug Induced Liver Injury; Diethylnitrosamine; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Enzyme Induction; Female; Hyperplasia; Inflammation; Lipid Peroxidation; Liver; Liver Neoplasms, Experimental; NF-E2-Related Factor 2; Nitric Oxide Synthase Type II; Oxidative Stress; Phenobarbital; Precancerous Conditions; Rats; Rats, Sprague-Dawley; Resveratrol; RNA, Messenger; Stilbenes; Tyrosine | 2010 |
Arachidonic acid inhibits neuronal nitric oxide synthase elicited by proinflammatory stimuli and promotes astrocyte survival with both exogenous and endogenous peroxynitrite via different mechanisms.
Cytosolic phospholipase A(2)-inhibited astrocytes respond to the cocktail lipopolysaccharide/interferon-gamma with an immediate formation of peroxynitrite (ONOO(-)) and a delayed lethal response. Low concentrations of arachidonic acid (ARA; i.e., <0.1 microM) cause tyrosine kinase-dependent inhibition of neuronal nitric oxide synthase (nNOS) activity, thereby suppressing formation of ONOO(-) and the ensuing lethal response. ARA promoted its effects only when given to the cultures just prior to, or in parallel with, the proinflammatory mixture. High concentrations of ARA, i.e., >3 microM, promoted cytoprotection when applied to the cultures up to 50 min after the formation of endogenous ONOO(-) had been completed or up to 30 min after addition of exogenous ONOO(-). The mechanism(s) involved in these responses was, however, independent of tyrosine kinase activation and was in fact mediated by ARA metabolites of the lipoxygenase pathway. These results are consistent with a scenario in which astrocytes respond to low or high amounts of ARA with the triggering of different pathways involved in the inflammatory response. Early nNOS inhibition mediated by very low levels of ARA is indeed critical for nuclear factor-kappaB activation, which is otherwise effectively inhibited by constitutive nitric oxide, and for preventing early formation of ONOO(-). Greater ARA concentrations promote survival in astrocytes committed to death by ONOO(-), a species extensively released under inflammatory conditions, via a mechanism dependent on lipoxygenase metabolism and inhibition of downstream events leading to cell demise. Topics: Animals; Animals, Newborn; Arachidonic Acid; Astrocytes; Blotting, Western; Cell Survival; Cells, Cultured; Cerebral Cortex; Enzyme Inhibitors; Immunohistochemistry; Inflammation; Lipoxygenase; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type I; Peroxynitrous Acid; Protein Tyrosine Phosphatases; Rats; Rats, Sprague-Dawley; Signal Transduction; Tyrosine | 2010 |
Melatonin reduces hyperalgesia associated with inflammation.
The perception of pain is altered by inflammatory processes. Anti-inflammatory drugs block this by raising the pain threshold and by reducing the inflammatory process. Melatonin is claimed to have anti-inflammatory activity in animal models of acute and chronic inflammation. However, little is known whether melatonin can reverse the hyperalgesia that is secondary to the inflammation. This study assessed the effect of melatonin on in a well-established model of hyperalgesia associated with inflammation in rats. Peroxynitrite, as generated by the interaction between superoxide anion radical exogenously supplied (O(2)(˙-) ) and endogenous nitric oxide (NO), led to the development of hyperalgesia. This subplantar injection of O(2)(˙-) into the right hindpaw evoked potent thermal hyperalgesia measured by changes in withdrawal latency. Melatonin (25-100 mg/kg, given ip 30 min prior to O(2)(˙-) ) dose dependently attenuated the hyperalgesic responses to O(2)(˙-) . Moreover, melatonin (100 mg/kg) significantly improved tissue damage and inflammation, blocked protein nitration affecting cyclooxygenase-2 and inducible nitric oxide synthase expression in paw tissue. To investigate the antinociceptive activity of melatonin and characterize the underlying mechanisms involved in this action, mitogen-activated protein kinase and NF-κB pathways were explored. Moreover, antihyperalgesic effect of melatonin derived partly from the inhibition of superoxide-driven PARP activation. These results suggest that melatonin has ameliorative potential in attenuating the hyperalgesia associated with inflammation. Topics: Animals; Cyclooxygenase 2; Disease Models, Animal; Hyperalgesia; Immunohistochemistry; Inflammation; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Melatonin; Mitogen-Activated Protein Kinases; NF-kappa B; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Reproducibility of Results; Signal Transduction; Superoxides; Tyrosine | 2010 |
Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease.
Current evidence suggests a role of neuroinflammation in the pathogenesis of Parkinson's disease (PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of basal ganglia injury. Reportedly, nonsteroidal anti-inflammatory drugs (NSAIDs) mitigate DAergic neurotoxicity in rodent models of PD. Consistent with these findings, epidemiological analysis indicated that certain NSAIDs may prevent or delay the progression of PD. However, a serious impediment of chronic NSAID therapy, particularly in the elderly, is gastric, renal and cardiac toxicity. Nitric oxide (NO)-donating NSAIDs, have a safer profile while maintaining anti-inflammatory activity of parent compounds. We have investigated the oral activity of the NO-donating derivative of flurbiprofen, [2-fluoro-α-methyl (1,1'-biphenyl)-4-acetic-4-(nitrooxy)butyl ester], HCT1026 (30 mg kg(-1) daily in rodent chow) in mice exposed to the parkinsonian neurotoxin MPTP.. Ageing mice were fed with a control, flurbiprofen, or HCT1026 diet starting ten days before MPTP administration and continuing for all the experimental period. Striatal high affinity synaptosomal dopamine up-take, motor coordination assessed with the rotarod, tyrosine hydroxylase (TH)- and dopamine transporter (DAT) fiber staining, stereological cell counts, immunoblotting and gene expression analyses were used to assess MPTP-induced nigrostriatal DAergic toxicity and glial activation 1-40 days post-MPTP.. HCT1026 was well tolerated and did not cause any measurable toxic effect, whereas flurbiprofen fed mice showed severe gastrointestinal side-effects. HCT1026 efficiently counteracted motor impairment and reversed MPTP-induced decreased synaptosomal [3H]dopamine uptake, TH- and DAT-stained fibers in striatum and TH+ neuron loss in substantia nigra pars compacta (SNpc), as opposed to age-matched mice fed with a control diet. These effects were associated to a significant decrease in reactive macrophage antigen-1 (Mac-1)-positive microglial cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX), and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons.. Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice. HCT1026 provides a novel promising approach towards the development of effective pharmacological neuroprotective strategies against PD. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Animals; Anti-Inflammatory Agents, Non-Steroidal; Corpus Striatum; Disease Models, Animal; Dopamine; Dopamine Agents; Flurbiprofen; Humans; Inflammation; Macrophage-1 Antigen; Male; Mice; Mice, Inbred C57BL; Motor Activity; MPTP Poisoning; Nitric Oxide; Nitric Oxide Synthase Type II; Oxidoreductases; Parkinson Disease; Rotarod Performance Test; Substantia Nigra; Tyrosine | 2010 |
Glycyrrhizin reduces secondary inflammatory process after spinal cord compression injury in mice.
Glycyrrhizin, a major active constituent of liquorice root (Glycyrrhiza glabra), has a free radical scavenging property, and its effects were evaluated on an animal model of spinal cord injury (SCI) induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, tissue damage, and apoptosis (measured by terminal deoxynucleotidyltransferase-mediated dUTP-biotin end labeling staining, Bax, and Bcl-2 expression). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for nitrotyrosine, iNOS, and poly(adenosine diphosphate-ribose) in the spinal cord tissue. Additionally, we demonstrate that these inflammatory events were associated with the activation of nuclear factor-kappaB. In contrast, the degree of (1) spinal cord inflammation and tissue injury (histological score), (2) nitrotyrosine and poly(adenosine diphosphate [ADP] ribose) formation, (3) iNOS expression, (4) nuclear factor-kappaB activation, and (5) apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP-biotin end labeling, Bax, and Bcl-2) was markedly reduced in spinal cord tissue obtained from mice treated with glycyrrhizin extract (10 mg/kg, i.p., 30 min before and 1 and 6 h after SCI). In a separate set of experiments, we have clearly demonstrated that glycyrrhizin extract treatment significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results clearly demonstrate that treatment with glycyrrhizin extract reduces the development of inflammation and tissue injury events associated with spinal cord trauma. Topics: Animals; Anti-Inflammatory Agents; bcl-2-Associated X Protein; Glycyrrhizic Acid; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Male; Mice; Mice, Inbred Strains; Motor Activity; Nitric Oxide Synthase Type II; Proto-Oncogene Proteins c-bcl-2; Spinal Cord Injuries; Tyrosine | 2009 |
Beneficial effects of ethyl pyruvate in a mouse model of spinal cord injury.
The aim of the present study was to evaluate in a mouse model of spinal cord injury (SCI) the effect of the treatment with ethyl pyruvate (EP). Spinal cord injury was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy in mice. Treatment with EP (75, 25, or 8.5 mg/kg) 1 and 6 h after the SCI significantly decreased (a) the degree of spinal cord inflammation and tissue injury (histological score), (b) neutrophil infiltration (myeloperoxidase activity), (c) nitrotyrosine formation and iNOS expression, (d) proinflammatory cytokines expression, (e) nuclear factor kappaB activation, (f) extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase phosphorylation, and (g) apoptosis (TUNEL staining, Fas ligand, Bax, and Bcl-2 expression). Moreover, EP (75, 25, or 8.5 mg/kg) significantly ameliorated in a dose-dependent manner the loss of limb function (evaluated by motor recovery score). Taken together, our results demonstrate that EP treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma. Topics: Animals; Apoptosis; bcl-2-Associated X Protein; Disease Models, Animal; Dose-Response Relationship, Drug; Fas Ligand Protein; Gene Expression Regulation; Humans; Inflammation; Male; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neutrophil Infiltration; Nitric Oxide Synthase Type II; Peroxidase; Phosphorylation; Pyruvates; Spinal Cord Injuries; Time Factors; Tyrosine | 2009 |
Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine.
There are few reports about the direct toxic effects of hyperhomocysteinemia on the liver. We investigated oxidative and nitrosative stresses and apoptotic and necrotic changes in the liver of rats fed a high-methionine (HM) diet (2%, w/w) for 6 mo. We also investigated whether taurine, an antioxidant amino acid, is protective against an HM-diet-induced toxicity in the liver.. Lipid peroxide levels, nitrotyrosine formation, and non-enzymatic and enzymatic antioxidants were determined in livers of rats fed an HM diet. In addition, apoptosis-related proteins, proapoptotic Bax and antiapoptotic B-cell lymphoma-2 expressions, apoptotic cell count, histopathologic appearance in the liver, and alanine transaminase and aspartate transaminase activities in the serum were investigated.. Plasma homocysteine levels and serum alanine transaminase and aspartate transaminase activities were increased after the HM diet. This diet resulted in increases in lipid peroxide and nitrotyrosine levels and decreases in non-enzymatic and enzymatic antioxidants in liver homogenates in rats. Bax expression increased, B-cell lymphoma-2 expression decreased, and apoptotic cell number increased in livers of rats fed an HM diet. Inflammatory reactions, microvesicular steatosis, and hepatocyte degeneration were observed in the liver after the HM diet. Taurine (1.5%, w/v, in drinking water) administration and the HM diet for 6 mo was found to decrease serum alanine transaminase and aspartate transaminase activities, hepatic lipid peroxide levels, and nitrotyrosine formation without any change in serum homocysteine levels. Decreases in Bax expression, increases in B-cell lymphoma-2 expression, decreases in apoptotic cell number, and amelioration of histopathologic findings were observed in livers of rats fed with the taurine plus HM diet.. Our results indicate that taurine has protective effects on hyperhomocysteinemia-induced toxicity by decreasing oxidative and nitrosative stresses, apoptosis, and necrosis in the liver. Topics: Alanine Transaminase; Animals; Antioxidants; Apoptosis; Aspartate Aminotransferases; bcl-2-Associated X Protein; Hyperhomocysteinemia; Inflammation; Lipid Peroxides; Liver; Male; Malondialdehyde; Methionine; Necrosis; Nitrosation; Oxidative Stress; Rats; Rats, Wistar; Taurine; Tyrosine | 2009 |
Inflammatory and redox status of ponies with a history of pasture-associated laminitis.
Inflammatory and redox signals could render lamellar tissue susceptible to damage and contribute to higher risk for laminitis in obese or insulin resistant ponies just as these factors contribute to health risks in humans with metabolic syndrome. This study evaluated circulating markers of inflammatory and redox status in ponies that had a history of recurrent bouts of pasture-associated laminitis (PL, n = 42) or had never developed clinical laminitis (NL, n = 34) under the current management conditions. There were no differences (P > 0.05) between PL and NL ponies for markers of antioxidant function (glutathione, glutathione peroxidase, superoxide dismutase) or increased oxidative pressure (malondialdehyde, apoptosis, 3-nitrotyrosine). Inflammatory status, as indicated by fibrinogen concentration, was also not different between pony groups (P = 0.84). However, PL ponies had higher (P < 0.001) plasma concentrations of the pro-inflammatory cytokine TNF-alpha than NL ponies. This suggests that a predisposition to laminitis is associated with increased circulating inflammatory cytokines. TNF-alpha could also represent a contributing factor to increased insulin resistance observed in laminitis prone ponies. These results provide new insight into potential mechanisms and risk factors underlying laminitis. Topics: Aging; Animal Husbandry; Animals; Cytokines; Female; Foot Diseases; Hoof and Claw; Horse Diseases; Horses; Inflammation; Oxidation-Reduction; Risk Factors; Superoxide Dismutase; Tyrosine | 2009 |
Plasma 3-nitrotyrosine is a biomarker in animal models of arthritis: Pharmacological dissection of iNOS' role in disease.
The contribution of inducible nitric oxide synthase (iNOS) to oxidative/nitrative stress is well-documented in inflammation, but difficult to quantify. Using a novel, recently developed assay for 3-nitrotyrosine (3-NT), we characterized iNOS activity and its inhibition in preclinical models of inflammation. In particular, we utilized the 3-NT assay to assess the role of iNOS in the disease pathology as well as for proof of pharmacology of iNOS inhibitors in an acute endotoxin challenge model, in models of rheumatoid arthritis (RA) such as rat adjuvant- and collagen-induced arthritis (AIA and CIA) and a model of osteoarthritis (OA) such as rat sodium monoiodoacetate-induced arthritis (MIA). Quantification of nitrotyrosine was performed using immuno-affinity 2-D LC-MS/MS assay. This assay is a very specific and reproducible and is amenable to a number of biological fluids. Plasma levels of 3-NT were significantly elevated in an acute model of inflammation (rat LPS) and in models of rheumatoid arthritis (adjuvant- and collagen-induced arthritis), and osteoarthritis (monoiodoacetate-induced arthritis). Plasma 3-NT correlated with the severity of the inflammatory response; thus, a 20-fold increase was observed in the rat LPS model, a 10-fold increase in AIA, and only a 2.5-fold elevation in CIA. Pharmacological intervention with iNOS inhibitors decreased 3-NT levels and associated pathology. 3-NT determination allowed for better elucidation of the role of iNOS in RA and OA disease pathology and provided proof of pharmacology for NOS inhibitors in animal models of RA and OA. Topics: Animals; Arthritis, Experimental; Arthritis, Rheumatoid; Biomarkers; Disease Models, Animal; Enzyme Inhibitors; Inflammation; Nitric Oxide Synthase Type II; Osteoarthritis; Rats; Severity of Illness Index; Tyrosine | 2009 |
A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice.
We investigated the effects of a gamma-tocopherol-rich mixture of tocopherols (gamma-TmT, containing 57% gamma-T, 24% delta-T, and 13% alpha-T) on colon carcinogenesis in azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. In experiment 1, 6-week-old male CF-1 mice were given a dose of AOM (10 mg/kg body weight, i.p.), and 1 week later, 1.5% DSS in drinking water for 1 week. The mice were maintained on either a gamma-TmT (0.3%)-enriched or a standard AIN93M diet, starting 1 week before the AOM injection, until the termination of experiment. In the AOM/DSS-treated mice, dietary gamma-TmT treatment resulted in a significantly lower colon inflammation index (52% of the control) on day 7 and number of colon adenomas (9% of the control) on week 7. gamma-TmT treatment also resulted in higher apoptotic index in adenomas, lower prostaglandin E2, leukotriene B4, and nitrotyrosine levels in the colon, and lower prostaglandin E2, leukotriene B4, and 8-isoprostane levels in the plasma on week 7. Some of the decreases were observed even on day 7. In experiment 2 with AOM/DSS- treated mice sacrificed on week 21, dietary 0.17% or 0.3% gamma-TmT treatment, starting 1 week before the AOM injection, significantly inhibited adenocarcinoma and adenoma formation in the colon (to 17-33% of the control). Dietary 0.3% gamma-TmT that was initiated after DSS treatment also exhibited a similar inhibitory activity. The present study showed that gamma-TmT effectively inhibited colon carcinogenesis in AOM/DSS-treated mice, and the inhibition may be due to the apoptosis-inducing, anti-inflammatory, antioxidative, and reactive nitrogen species-trapping activities of tocopherols. Topics: Adenocarcinoma; Adenoma; Animals; Antioxidants; Apoptosis; Azoxymethane; Carcinogens; Cell Transformation, Neoplastic; Cocarcinogenesis; Colon; Colonic Neoplasms; Dextran Sulfate; Dinoprost; Dinoprostone; Dose-Response Relationship, Drug; gamma-Tocopherol; Inflammation; Leukotriene B4; Male; Mice; Tyrosine | 2009 |
Treatment with green tea extract attenuates secondary inflammatory response in an experimental model of spinal cord trauma.
In this study, we evaluated the effect of green tea extract (that was administered 25 mg/kg intraperitoneal at 1 and 6 h after injury) in experimental animal model of spinal cord injury. The spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterised by oedema, neutrophilic infiltration and apoptosis. Also, immunohistochemical examination demonstrated a marked increase in immune reactivity for nitrotyrosine. All parameters of inflammation were attenuated by green tea extract. The degree of spinal cord inflammation, nitrotyrosine, poli (ADP-ribosio) synthetase (PARS) and neutrophilic infiltration was markedly reduced. Green tea extract significantly ameliorated the recovery of limb function. Values shown are mean +/- SE mean of ten mice for each group. *p < 0.01 versus sham, degrees p < 0.01 versus spinal cord injury. Taken together, our results clearly demonstrate that green tea extract treatment ameliorates spinal cord injury oxidative stress. Topics: Animals; Apoptosis; Disease Models, Animal; Edema; Immunohistochemistry; Inflammation; Male; Mice; Neutrophil Infiltration; Oxidative Stress; Plant Extracts; Poly(ADP-ribose) Polymerases; Spinal Cord Injuries; Tea; Time Factors; Tyrosine | 2009 |
Possible impact of impaired double-stranded RNA degradation and nitrosative stress on immuno-inflammatory cascade in type 2 diabetes.
The immune response can be triggered by molecules derived from microorganisms (PAMP) or from molecules derived from damaged or dead host cells, known as the damage-associated molecular-pattern molecules (DAMP). Their immune effects are accompanied by altered redox environment. The level of stable end products of nitric oxide (NO)- plasma nitrate and nitrite (NOx), carbonyl groups (PCO) and nitrotyrosine (NTY), in relation to the metabolism of dsRNAs (poly I:C and poly A:U) and xanthine oxidase (XO activity), in plasma of type2 diabetic patients was determined. Thirty-six patients with type 2 diabetes (age group 34-66 years, 19 male and 17 female) were allocated to the study. Diabetic patients had a significantly higher level of plasma NOx products, NTY and PCO, fructosamine (FA) and XO activity indicating about altered redox environment. The concentration of circulating ribonucleic acids (CNAs) was significantly higher in type 2 diabetic patients, which was accompanied by a significantly decreased activity of RNase against double stranded RNA forms (poly I:C and poly A:U), compared to control samples. To determine whether CNAs, as possible DAMP molecules, are capable of exerting effect on inflammatory and host antiviral response, the effect of isolated CNAs on NF-kappaB, Bcl-2, Bax, MDA-5 and IRF-3 regulation was evaluated in culture of fresh isolated thymocytes. Circulating nucleic acids isolated from type 2 diabetic patients were able to upregulate NF-kappaB more than control RNA samples. In the same experimental conditions the mild Bcl-2 upregulation, followed by the marked Bax upregulation, was demonstrated. Since the Bcl-2/Bax ratio was lower in type 2 diabetic samples, obtained results may implicate that CNAs may exert proapoptotic response in type 2 diabetes. The CNAs isolated from diabetic patients were able to downregulate MDA-5 and IRF-3, very important subjects of the surveillance and cellular anti-viral response. The major findings of the present study are that impaired dsRNA metabolism may lead to increased level of different sized RNAs in type 2 diabetic patients. Acting as possible DAMP molecules, they may contribute to higher susceptibility of immune cells to inflammatory cascade via NF-kappaB activation, and possible MDA-5/IRF-3 axis downregulation, what may have an influence on further ineffective response against different pathogens. Topics: Adult; Aged; Animals; bcl-2-Associated X Protein; Blood Glucose; Cells, Cultured; DEAD-box RNA Helicases; Diabetes Mellitus, Type 2; Female; Fluorescent Antibody Technique; Humans; Inflammation; Interferon Regulatory Factor-3; Interferon-Induced Helicase, IFIH1; Male; Middle Aged; NF-kappa B; Nitrites; Nucleic Acids; Proto-Oncogene Proteins c-bcl-2; Rats; RNA Stability; RNA, Double-Stranded; Thymus Gland; Tyrosine; Xanthine Oxidase | 2009 |
3-Nitrotyrosine inhibits fibroblast-mediated collagen gel contraction and chemotaxis.
Reactive nitrogen species induce tissue inflammation and nitrate tyrosine residues of various kinds of proteins. Recent studies have established that the free amino acid form of 3-nitrotyrosine induces cytotoxity and growth inhibition and alters the cellular function in cultured cells. The aim of this study was to evaluate whether 3-nitrotyrosine could affect tissue remodelling in fibroblasts. To accomplish this, human fetal lung fibroblasts (HFL-1) were used to assess the fibroblast-mediated contraction of floating gels and chemotaxis towards fibronectin. In addition, the ability of fibroblasts to release fibronectin, transforming growth factor (TGF)-beta1, fibronectin and vascular endothelial growth factor (VEGF) was assessed. 3-Nitrotyrosine significantly inhibited gel contraction (p<0.01) compared with control and this inhibition was abolished by nitric oxide synthase (NOS) inhibitor. 3-Nitrotyrosine did not affect TGF-beta1 and VEGF but significantly decreased fibronectin release (p<0.01) into the media. 3-Nitrotyrosine significantly inhibited chemotaxis towards fibronectin through suppression of alpha(5)beta(1) integrin expression (p<0.01). NOS inhibitor also reversed 3-nitrotyrosine-inhibited chemotaxis (p<0.01). Finally, 3-nitrotyrosine enhanced the expression of the inducible type of NOS (p<0.01) and nitric oxide release (p<0.01) through nuclear factor-kappaB activation. These results suggest that the free amino acid form of 3-nitrotyrosine can affect the tissue repair process by modulating nitric oxide production. Topics: Cell Line; Chemotaxis; Collagen; Fibroblasts; Fibronectins; Gels; Humans; Inflammation; Lung; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Transforming Growth Factor beta; Tyrosine; Vascular Endothelial Growth Factor A | 2009 |
Glycaemic status in relation to oxidative stress and inflammation in well-controlled type 2 diabetes subjects.
The aim of the present observational study was to investigate the relationships between glycaemic status and levels of oxidative stress and inflammation in well-controlled type 2 diabetes subjects. Metabolic variables (weight, BMI, waist circumference (waist), blood glucose, glycated Hb (HbA(1c)), insulin, blood lipids), biomarkers of oxidative stress (8-iso-PGF(2alpha), malondialdehyde, 8-oxo-7,8-dihydro-2'-deoxyguanosine, formamido pyrimidine glycosylase-sites, frequency of micronucleated erythrocytes, nitrotyrosine) and inflammatory markers (high sensitivity C-reactive protein (hsCRP), IL-6, cyclo-oxygenase-catalyzed PGF(2alpha)-metabolite) were measured. Fifty-six patients (thirty women and twenty-six men, age 62.3 (SD 7.0) years, HbA(1c) 6.1 (SD 0.9) %, BMI 28.3 (SD 3.8) kg/m(2), waist 99.6 (SD 11.1) cm) were included in the study. HbA(1c) (r 0.29, P=0.03) and blood glucose (r 0.33, P=0.01) correlated positively with 8-iso-PGF(2alpha). Positive correlations were also observed between HbA(1c) and nitrotyrosine (r 0.42, P=0.01), waist and hsCRP (r 0.37, P=0.005), hsCRP and IL-6 (r 0.61, P<0.0001) and between PGF(2alpha)-metabolite and 8-iso-PGF(2alpha) (r 0.27, P=0.048). The present study indicates that glycaemic status is associated with oxidative stress even in subjects with well-controlled type 2 diabetes. Furthermore, inflammation was more related to abdominal obesity than to glycaemic control. A large number of biomarkers of oxidative stress and inflammation were investigated, but only a few associations were found between the markers. This could be due to the fact that none of these biomarkers biosynthesises via similar pathways or simultaneously owing to their diverse nature and origin. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Biomarkers; Blood Glucose; Body Mass Index; C-Reactive Protein; Deoxyguanosine; Diabetes Mellitus, Type 2; Dinoprost; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Inflammation; Insulin; Interleukin-6; Lipids; Male; Malondialdehyde; Middle Aged; Obesity; Oxidative Stress; Probability; Statistics, Nonparametric; Tyrosine; Waist Circumference | 2009 |
Dietary catechol causes increased oxidative DNA damage in the livers of mice treated with acetaminophen.
We have shown that direct reaction of catechol with nitric oxide (NO) results in generation of reactive oxygen and nitrogen species (RNS) through semiquinone radical formation, leading to oxidative DNA damage in rat forestomach. In the present study, we investigated whether dietary catechol systemically exerts the same effects under NO-rich circumstances, when given before and during induction of inflammatory lesions. Male ICR mice were treated with or without 0.8% catechol in the diet for 2 weeks followed by acetaminophen (APAP) administration at a dose of 300mg/kg by single i.p. injection. Along with several indicators of APAP-induced hepatitis, 8-hydroxydeoxyguanosine (8-OHdG) levels and immunohistochemistry for 3-nitrotyrosine (NO(2)Tyr) in the livers were examined at 1.5, 4 and 24h after APAP injection. 8-OHdG was significantly increased at 24h in the co-treatment group, but not with either catechol or APAP alone. Elevation of serum ALT and AST activities, decrease of reduced glutathione levels and histopathological liver changes were observed to the same extents in both APAP-treated groups. In view of the finding of positive hepatocytes for NO(2)Tyr prior to generation of 8-OHdG, the process of oxidative DNA damage might involve RNS formation. Precise quantitative analysis of NO(2)Tyr by means of liquid chromatography with tandem mass spectrometry (LC-MS/MS) in an additional study with the same experimental protocol confirmed increase of RNS due to the reaction of catechol with NO produced after APAP-induced hepatitis. The overall data imply that antioxidants with a catechol structure can cause oxidative DNA damage under inflammatory conditions. Topics: 8-Hydroxy-2'-Deoxyguanosine; Acetaminophen; Alanine Transaminase; Animals; Catechols; Chemical and Drug Induced Liver Injury; Deoxyguanosine; Diet; DNA Damage; Glutathione; Immunohistochemistry; Inflammation; Liver; Male; Mice; Mice, Inbred ICR; Nitric Oxide; Oxidation-Reduction; Time Factors; Transaminases; Tyrosine | 2009 |
Mild cerebral hypoxia-ischemia produces a sub-acute transient inflammatory response that is less selective and prolonged after a substantial insult.
Cerebral ischemia initiates various injurious processes including neuroinflammatory responses such as activation of microglia and increases in cytokine and nitric oxide release. Evidence primarily from in vitro studies, indicates that neuroinflammatory effects can be either beneficial or harmful, possibly related to stimulus strength. We investigated using in vivo models, the effect of a mild or substantial cerebral hypoxia-ischemia on: cerebral microglial/macrophage activation (ED1), pro-inflammatory cytokines (tumor necrosis factor-alpha), nitrosative stress (nitrotyrosine) and permanent brain damage. A mild insult produced a transient (1-2 days post) increase in activated microglia/macrophages within subcortical white and not gray matter but transiently increased cytokine or nitrotyrosine expression in cortex and not white matter. There was also prolonged scattered cell death in cortex and white matter over weeks along with loss of myelin/axons and cortical atrophy at 4 weeks post-insult. In contrast, a substantial insult produced white and gray matter necrosis, cyst formation and atrophy, along with increases in tumor necrosis factor and nitrotyrosine staining within both white and gray matter starting at 1-2 days post-insult. Microglial/macrophage staining was increased starting at 1-week post a substantial insult and remained elevated for weeks thereafter. Thus, a transient neuroinflammatory response occurs following a mild insult whereas prolonged scattered cell death occurs for weeks, particularly in white matter. Insult severity also affects the progression of the neuroinflammatory response, which is prolonged after a substantial insult. Effective therapy will need to be customized for insult severity and timing; and, monitoring the injury processes with imaging or biomarkers may help guide treatment. Topics: Animals; Brain; Cell Death; Glial Fibrillary Acidic Protein; Hypoxia-Ischemia, Brain; Inflammation; Myelin Basic Protein; Random Allocation; Rats; Tumor Necrosis Factor-alpha; Tyrosine | 2009 |
Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome.
Metabolic syndrome (MetS) is a group of cardiovascular risk factors, including visceral obesity, glucose intolerance, hypertension, and dyslipidemia. Increased oxidative and nitrative stress and inflammation and decreased endothelial function occur in an animal model of metabolic syndrome, SHR/NDmcr-cp (SHR/cp) rats. The present study investigated the effects of coenzyme Q10 (CoQ10), one of the important antioxidants, on the abnormal oxidative condition and characteristic components of metabolic syndrome in SHR/cp rats by maintaining them on a diet supplemented with 0.07% - 0.7% CoQ10 for 26 weeks. We determined serum levels of oxidatively modified low-density lipoprotein (Ox-LDL) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as oxidative stress markers, 3-nitrotyrosine as a nitrative stress marker, 3-chlorotyrosine as a marker of myeloperoxidase (MPO)-catalyzed oxidation and high-sensitivity C-reactive protein (hsCRP) as an inflammatory marker. The administration of CoQ10 significantly attenuated the increase of oxidative and nitrative stress markers and inflammatory markers in a dose-dependent manner. CoQ10 prevented the elevated serum insulin levels, although it did not affect the elevated glucose level and dyslipidemia. CoQ10 also reduced elevated blood pressure, but did not affect body weight gain. In addition, CoQ10 improved endothelial dysfunction in the mesenteric arteries. These findings suggest that the antioxidant properties of CoQ10 can be effective for ameliorating cardiovascular risk in MetS. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Blood Glucose; Body Weight; Deoxyguanosine; Disease Models, Animal; Inflammation; Insulin; Lipids; Lipoproteins, LDL; Metabolic Syndrome; Oxidative Stress; Peroxidase; Rats; Rats, Inbred SHR; Tyrosine; Ubiquinone | 2008 |
Nitrotyrosine in human neonatal spinal cord after perinatal asphyxia.
Spinal cord injury has been reported after perinatal asphyxia in full-term neonates.. To examine the role of excessive nitric oxide production in perinatal spinal cord injury.. Tissue samples of 18 full-term neonates who died of hypoxic-ischemic encephalopathy were analyzed for the presence of nitrotyrosine (NT).. NT was demonstrated in 5 of these 18 neonates. In addition, activated caspase 3, a marker of apoptosis, and CD68, as a marker of inflammation, could be demonstrated in some infants.. excessive nitric oxide production and subsequent NT formation is seen in spinal cord tissue after severe perinatal asphyxia. This finding may be relevant for the development of neuroprotective strategies. Topics: Antigens, CD; Antigens, Differentiation, Myelomonocytic; Apoptosis; Asphyxia Neonatorum; Autopsy; Caspase 3; Female; Humans; Hypoxia-Ischemia, Brain; Infant, Newborn; Inflammation; Male; Nitric Oxide; Spinal Cord; Tyrosine | 2008 |
Melatonin ameliorates oxidative stress, inflammation, proteinuria, and progression of renal damage in rats with renal mass reduction.
The progressive deterioration of renal function and structure resulting from renal mass reduction are mediated by a variety of mechanisms, including oxidative stress and inflammation. Melatonin, the major product of the pineal gland, has potent_antioxidant and anti-inflammatory properties, and its production is impaired in chronic renal failure. We therefore investigated if melatonin treatment would modify the course of chronic renal failure in the remnant kidney model. We studied rats followed 12 wk after renal ablation untreated (Nx group, n = 7) and treated with melatonin administered in the drinking water (10 mg/100 ml) (Nx + MEL group, n = 8). Sham-operated rats (n = 10) were used as controls. Melatonin administration increased 13-15 times the endogenous hormone levels. Rats in the Nx + MEL group had reduced oxidative stress (malondialdehyde levels in plasma and in the remnant kidney as well as nitrotyrosine renal abundance) and renal inflammation (p65 nuclear factor-kappaB-positive renal interstitial cells and infiltration of lymphocytes and macrophages). Collagen, alpha-smooth muscle actin, and transforming growth factor-beta renal abundance were all increased in the remnant kidney of the untreated rats and were reduced significantly by melatonin treatment. Deterioration of renal function (plasma creatinine and proteinuria) and structure (glomerulosclerosis and tubulointerstitial damage) resulting from renal ablation were ameliorated significantly with melatonin treatment. In conclusion, melatonin administration improves the course of chronic renal failure in rats with renal mass reduction. Further studies are necessary to define the potential usefulness of this treatment in other animal models and in patients with chronic renal disease. Topics: Actins; Animals; Blood Pressure; Cell Movement; Collagen Type IV; Creatinine; Disease Models, Animal; Hypertension; Hypertrophy; Inflammation; Kidney; Kidney Failure, Chronic; Leukocytes; Male; Malondialdehyde; Melatonin; Nephrectomy; Oxidative Stress; Proteinuria; Rats; Rats, Sprague-Dawley; Transcription Factor RelA; Transforming Growth Factor beta; Tyrosine | 2008 |
Asymmetric dimethyl-arginine (ADMA) response to inflammation in acute infections.
The endogenous inhibitor of nitric oxide synthase (NOs) asymmetrical dimethyl-arginine (ADMA) has been implicated as a possible modulator of inducible NOs during acute inflammation. We examined the evolution in the plasma concentration of ADMA measured at the clinical outset of acute inflammation and after its resolution in a series of 17 patients with acute bacterial infections.. During the acute phase of inflammation/infection, patients displayed very high levels of C-reactive protein (CRP), interleukin-6 (IL-6), procalcitonin and nitrotyrosine. Simultaneous plasma ADMA concentration was similar to that in healthy subjects while symmetric dimethyl-arginine (SDMA) levels were substantially increased and directly related with creatinine. When infection resolved, ADMA rose from 0.62 +/- 0.23 to 0.80 +/- 0.18 micromol/l (+29%, P = 0.01) while SDMA remained unmodified. ADMA changes were independent on concomitant risk factor changes and inversely related with baseline systolic and diastolic pressure. Changes in the ADMA/SDMA ratio were compatible with the hypothesis that inflammatory cytokines activate ADMA degradation.. Resolution of acute inflammation is characterized by an increase in the plasma concentration of ADMA. The results imply that ADMA suppression may actually serve to stimulate NO synthesis or that in this situation plasma ADMA levels may not reflect the inhibitory potential of this methylarginine at the cellular level. Topics: Acute Disease; Arginine; Bacterial Infections; Biomarkers; Blood Pressure; C-Reactive Protein; Calcitonin; Calcitonin Gene-Related Peptide; Chromatography, High Pressure Liquid; Creatinine; Disease Progression; Enzyme-Linked Immunosorbent Assay; Female; Follow-Up Studies; Glycoproteins; Humans; Inflammation; Interleukin-6; Male; Middle Aged; Nitric Oxide Synthase; Protein Precursors; Severity of Illness Index; Tyrosine | 2007 |
Establishment of a sandwich ELISA using commercial antibody for plasma or serum 3-nitrotyrosine (3NT). Elevation in inflammatory diseases and complementary between 3NT and myeloperoxidase.
Amino acid tyrosine residue of a protein can be nitrated to form 3-nitrotyrosine (3NT), which is now being considered as a marker of inflammation, oxidative and nitrosative stress.. An in-house ELISA has been established using the same commercial antibody for both binding and detection of 3NT containing proteins.. The sensitivity of the in-house ELISA was 1.8 nmol/l. The imprecision was <10% at all concentrations. The in-house assay correlates well with a commercial kit (r=0.89). In addition to EDTA plasma, we found that both heparinized plasma and serum can also be used to quantify 3NT concentration. Using the in-house ELISA we have detected increased concentrations of 3NT in diseases known to be associated with inflammation and also in subjects with polyps. As marker of oxidative stress and inflammation, both 3NT and myeloperoxidase are complementary to each other in test sensitivity.. This ELISA can be used in the clinical laboratories to monitor the inflammatory disease activity and assess early risks that are associated with inflammation, oxidative and nitrosative stress. Topics: Animals; Enzyme-Linked Immunosorbent Assay; Humans; Inflammation; Mice; Peroxidase; Reagent Kits, Diagnostic; Reference Values; Tyrosine | 2007 |
Morning blood pressure surge as a destabilizing factor of atherosclerotic plaque: role of ubiquitin-proteasome activity.
Whether morning blood pressure surge influences the molecular mechanisms of plaque progression toward instability is not known. Recently, we have demonstrated enhanced activity of the ubiquitin-proteasome system in human plaques and evidenced that it is associated with inflammatory-induced plaque rupture. We evaluated the inflammatory infiltration and ubiquitin-proteasome activity in asymptomatic carotid plaques of hypertensive patients with different patterns of morning blood pressure surge. Plaques were obtained from 32 hypertensive patients without morning blood pressure surge and 28 with morning blood pressure surge enlisted to undergo carotid endarterectomy for extracranial high-grade (>70%) internal carotid artery stenosis. Plaques were analyzed for macrophages, T-lymphocytes, human leukocyte antigen-DR+cells, ubiquitin-proteasome activity, nuclear factor-kappaB, inhibitor kB-beta, tumor necrosis factor-alpha, nitrotyrosine, matrix metalloproteinase-9, and collagen content (immunohistochemistry and ELISA). Compared with plaques obtained from hypertensive patients without morning blood pressure surge, plaques from with morning blood pressure surge had more macrophages, T-lymphocytes, human leukocyte antigen-DR+cells (P<0.001), ubiquitin-proteasome activity, tumor necrosis factor-alpha, nuclear factor-kB (P<0.001), nitrotyrosine, and matrix metalloproteinase-9 (P<0.01), along with a lesser collagen content and IkB-beta levels (P<0.001). Enhanced ubiquitin-proteasome activity in atherosclerotic lesions of patients with morning blood pressure surge is associated with inflammatory-dependent unstable plaque phenotype. These data suggest a potential interplay between morning blood pressure surge and ubiquitin-proteasome activity in atherosclerosis pathophysiology. Topics: Blood Pressure; Blood Pressure Monitoring, Ambulatory; Carotid Artery Diseases; Circadian Rhythm; Humans; Hypertension; In Vitro Techniques; Inflammation; Intracranial Arteriosclerosis; NF-kappa B; Oxidative Stress; Proteasome Endopeptidase Complex; Tyrosine; Ubiquitin; Up-Regulation | 2007 |
Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice.
Recent clinical studies have suggested a major protective role for the antioxidant enzyme glutathione peroxidase-1 (GPx1) in diabetes-associated atherosclerosis. We induced diabetes in mice deficient for both GPx1 and apolipoprotein E (ApoE) to determine whether this is merely an association or whether GPx1 has a direct effect on diabetes-associated atherosclerosis.. ApoE-deficient (ApoE-/-) and ApoE/GPx1 double-knockout (ApoE-/- GPx1-/-) mice were made diabetic with streptozotocin and aortic lesion formation, and atherogenic pathways were assessed after 10 and 20 weeks of diabetes. Aortic proinflammatory and profibrotic markers were determined by both quantitative reverse-transcription polymerase chain reaction analysis after 10 weeks of diabetes and immunohistochemical analysis after 10 and 20 weeks of diabetes. Sham-injected nondiabetic counterparts served as controls. Atherosclerotic lesions within the aortic sinus region, as well as arch, thoracic, and abdominal lesions, were significantly increased in diabetic ApoE-/- GPx1-/- aortas compared with diabetic ApoE-/- aortas. This increase was accompanied by increased macrophages, alpha-smooth muscle actin, receptors for advanced glycation end products, and various proinflammatory (vascular cell adhesion molecule-1) and profibrotic (vascular endothelial growth factor and connective tissue growth factor) markers. Quantitative reverse-transcription polymerase chain reaction analysis showed increased expression of receptors for advanced glycation end products (RAGE), vascular cell adhesion molecule-1, vascular endothelial growth factor, and connective tissue growth factor. Nitrotyrosine levels were significantly increased in diabetic ApoE-/- GPx1-/- mouse aortas. These findings were observed despite upregulation of other antioxidants.. Lack of functional GPx1 accelerates diabetes-associated atherosclerosis via upregulation of proinflammatory and profibrotic pathways in ApoE-/- mice. Our study provides evidence of a protective role for GPx1 and establishes GPx1 as an important antiatherogenic therapeutic target in patients with or at risk of diabetic macrovascular disease. Topics: Animals; Aorta; Aortic Diseases; Apolipoproteins E; Atherosclerosis; Connective Tissue Growth Factor; Diabetes Mellitus, Experimental; Diabetic Angiopathies; Fibrosis; Gene Expression Regulation; Glutathione; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Hyperlipoproteinemia Type II; Immediate-Early Proteins; Inflammation; Intercellular Signaling Peptides and Proteins; Isoenzymes; Macrophages; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; NADPH Oxidase 2; NADPH Oxidases; NF-kappa B; Oxidation-Reduction; Receptor for Advanced Glycation End Products; Receptors, Immunologic; Sinus of Valsalva; Streptozocin; Superoxide Dismutase; Tyrosine; Vascular Cell Adhesion Molecule-1; Vascular Endothelial Growth Factor A | 2007 |
Nitrotyrosylation of Ca2+ channels prevents c-Src kinase regulation of colonic smooth muscle contractility in experimental colitis.
Basal levels of c-Src kinase are known to regulate smooth muscle Ca(2+) channels. Colonic inflammation results in attenuated Ca(2+) currents and muscle contraction. Here, we examined the regulation of calcium influx-dependent contractility by c-Src kinase in experimental colitis. Ca(2+)-influx induced contractions were measured by isometric tension recordings of mouse colonic longitudinal muscle strips depolarized by high K(+). The E(max) to CaCl(2) was significantly less in inflamed tissues (38.4 +/- 7.6%) than controls, indicative of reduced Ca(2+) influx. PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine], a selective Src kinase inhibitor, significantly reduced the contractile amplitude and shifted the pD(2) from 3.88 to 2.44 in controls, whereas it was ineffective in inflamed tissues (3.66 versus 3.43). After pretreatment with a SIN-1 (3-morpholinosydnonimine)/peroxynitrite combination, the maximal contraction to CaCl(2) was reduced by 46 +/- 7% in controls but unaffected in inflamed tissues (13 +/- 11%). Peroxynitrite also prevented the inhibitory effect of PP2 in control tissues. In colonic single smooth muscle cells, PP2 inhibited Ca(2+) currents by 84.1 +/- 3.9% in normal but only 36.2 +/- 13% in inflamed tissues. Neither the Ca(2+) channel Ca(v)1.2b, gene expression, nor the c-Src kinase activity was altered by inflammation. Western blot analysis showed no change in the Ca(2+) channel protein expression but increased nitrotyrosylated-Ca(2+) channel proteins during inflammation. These data suggest that post-translational modification of Ca(2+) channels during inflammation, possibly nitrotyrosylation, prevents c-Src kinase regulation resulting in decreased Ca(2+) influx. Topics: Animals; Calcium; Calcium Channels; Colitis; Colon; CSK Tyrosine-Protein Kinase; Disease Models, Animal; Electrophysiology; Humans; Inflammation; Male; Mice; Mice, Inbred BALB C; Muscle Contraction; Muscle, Smooth; Nitric Acid; Protein-Tyrosine Kinases; src-Family Kinases; Tyrosine | 2007 |
A lipophilic statin, pitavastatin, suppresses inflammation-associated mouse colon carcinogenesis.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors are known to modulate carcinogenesis. In this study, we investigated whether a lipophilic HMG-CoA reductase inhibitor pitavastatin suppresses inflammation-related mouse colon carcinogenesis. Male CD-1 (ICR) mice were initiated with a single intraperitoneal injection of azoxymethane (AOM, 10 mg/kg body weight) and promoted by 2% (w/v) dextran sodium sulfate (DSS) in drinking water for 7 days. The experimental diets containing pitavastatin at 2 dose levels (1 and 10 ppm) were fed to male CD-1 (ICR) mice for 17 weeks, staring 1 week after the cessation of DSS exposure. The effects of dietary pitavastatin on colonic tumor development were assessed at Weeks 5, 10 and 20. Feeding with pitavastatin at both doses significantly inhibited the multiplicity of colonic adenocarcinoma at Week 20. Furthermore, the treatment significantly lowered the positive rates of proliferating cell nuclear antigen and increased the apoptotic index in the colonic epithelial malignancies. The treatment also reduced nitrotyrosine-positivity in the colonic mucosa. Our findings thus show that pitavastatin is effective in inhibiting colitis-related colon carcinogenesis through modulation of mucosal inflammation, oxidative/nitrosative stress, and cell proliferation. Topics: Animals; Body Weight; Cholesterol; Colonic Neoplasms; DNA, Single-Stranded; Immunohistochemistry; Inflammation; Male; Mice; Molecular Structure; Organ Size; Proliferating Cell Nuclear Antigen; Quinolines; Time Factors; Triglycerides; Tyrosine | 2007 |
Involvement of reactive nitrogen oxides for acquisition of metastatic properties of benign tumors in a model of inflammation-based tumor progression.
The cells of a weakly tumorigenic and non-metastatic murine fibrosarcoma (QR-32) are converted into highly malignant tumors (acquiring metastatic potential) once they have grown in vivo after being co-implanted with gelatin sponge which induces inflammation. In the present study, we examined whether nitric oxide (NO) is involved in the inflammation-based tumor progression by administrating a specific inhibitor to inducible nitric oxide synthase, aminoguanidine (AG). First, we co-implanted 1 x 10(5) QR-32 cells with gelatin sponge (10 x 5 x 3 mm piece) into a subcutaneous space in C57BL6 mice. Administration of AG in drinking water (1%) had started 2 days before the tumor implantation and continued until the termination of the experiment. The incidence of tumor formation and the tumor growth did not differ between AG-treated group and -untreated group. On day 28, we excised the arising tumors to establish culture cell lines for evaluation of their acquisition of metastatic phenotype in other normal mice. Metastasis incidence and the number of metastatic colonies were significantly reduced in the tumor cell lines obtained from AG-treated mice compared to those from non-treated mice (p < 0.05). Immunohistochemical analysis demonstrated that inducible nitric oxide synthase and nitrotyrosine in the inflamed lesion were reduced in the AG-administered mice. However, intensity of 8-hydroxy-2-deoxyguanosine was not different between the groups. These results showed that nitric oxide and its reactive nitrogen oxide species cooperatively play a pivotal role in the progression of benign tumor cells in inflamed lesions. Topics: Animals; Cell Movement; Cell Proliferation; Disease Progression; Female; Fibrosarcoma; Gelatin Sponge, Absorbable; Guanidine; Guanine; Inflammation; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Neoplasm Transplantation; Nitric Oxide Synthase Type II; Oxidation-Reduction; Reactive Nitrogen Species; Tyrosine | 2006 |
Inflammatory leukocytes and iron turnover in experimental hemorrhagic lung trauma.
To monitor cascade of events following alveolar extravasation of blood due to exposure to shock wave (SW), we conducted spatiotemporal assessment of myeloperoxidase (MPO), heme oxygenase 1 (HO-1), Cu,Zn superoxide dismutase (SOD-1), transferrin (TRF), 3-nitrotyrosine (3NTyr), alveolar endothelial cadherin (VE-CDH), and the CD11b adhesion molecules on leukocytes using electron microscopy, electron paramagnetic resonance spectroscopy, immunofluorescence imaging, and immunoblotting. Accumulation of HO-1, MPO, 3NTyr, and SOD-1 in HIL at the first 12 h was associated with transmigration of inflammatory leucocytes (ILK) into hemorrhagic lesions (HLs). Biodegradation of extravasated hemoglobin (exvHb) and deposition of iron in alveoli occurred at 3-56 h post-exposure and was preceded by LKC degranulation and accumulation of MPO, HO-1, and SOD-1 in HLs. These alterations were accompanied by appearance of heme and non-heme iron complexes in HLs. A significant increase in TRF-bound [Fe(3+)] (i.e., 14.6 +/- 5.3 microM vs. 4.8 +/- 2.1 microM immediately after exposure) and non-TRF complexes of [Fe(3+)] (i.e., 4.5 +/- 1.8 microM vs. < 0.3 microM immediately after exposure) occurred at 24 h post-exposure. Transmigrations of ILK, nitroxidative stress, and iron deposition in endothelial and epithelial cells were accompanied by destruction of endothelial integrity at 3 h post-exposure, and alveolar capillary network and necrotic changes in the pulmonary epithelial cells at 24-56 h post-exposure. Topics: Animals; Antigens, CD; Blast Injuries; Cadherins; Cell Movement; Endothelial Cells; Epithelial Cells; Heme Oxygenase-1; Hemoglobins; Hemorrhage; Inflammation; Iron; Leukocytes; Male; Oxidative Stress; Peroxidase; Pulmonary Alveoli; Rats; Rats, Sprague-Dawley; Respiratory Distress Syndrome; Superoxide Dismutase; Superoxide Dismutase-1; Transferrin; Tyrosine | 2006 |
Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase.
Asbestosis is a chronic form of interstitial lung disease characterized by inflammation and fibrosis that results from the inhalation of asbestos fibers. Although the pathogenesis of asbestosis is poorly understood, reactive oxygen species may mediate the progression of this disease. The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) can protect the lung against a variety of insults; however, its role in asbestosis is unknown. To determine if EC-SOD plays a direct role in protecting the lung from asbestos-induced injury, intratracheal injections of crocidolite were given to wild-type and ec-sod-null mice. Bronchoalveolar lavage fluid (BALF) from asbestos-treated ec-sod-null mice at 24 h, 14 days, or 28 days posttreatment showed increased inflammation and total BALF protein content compared to that of wild-type mice. In addition, lungs from ec-sod-null mice showed increased hydroxyproline content compared to those of wild-type mice, indicating a greater fibrotic response. Finally, lungs from ec-sod-null mice showed greater oxidative damage, as assessed by nitrotyrosine content compared to those of their wild-type counterparts. These results indicate that depletion of EC-SOD from the lung increases oxidative stress and injury in response to asbestos. Topics: Animals; Asbestos, Crocidolite; Bronchoalveolar Lavage Fluid; Hydroxyproline; Inflammation; Lung; Lung Diseases; Lung Injury; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Superoxide Dismutase; Tyrosine | 2006 |
Acute renal failure: determinants and characteristics of the injury-induced hyperinflammatory response.
Acute renal failure (ARF) markedly sensitizes mice to endotoxin (LPS), as evidenced by exaggerated renal cytokine/chemokine production. This study sought to further characterize this state by testing the following: 1) does anti-inflammatory heme oxygenase-1 (HO-1) upregulation in selected ARF models prevent this response? 2) Is the ARF hyperresponsive state specifically triggered by LPS? 3) Does excess iNOS activity/protein nitrosylation participate in this phenomenon? and 4) are upregulated Toll receptors involved? Mice with either 1) rhabdomyolysis-induced ARF (massive HO-1 overexpression), 2) cisplatin nephrotoxicity, 3) or HO-1 inhibition (Sn protoporphyrin) were challenged with either LPS (a TLR4 ligand), lipoteichoic acid (LTA; a TLR2 ligand), or vehicle. Two hours later, renal and plasma TNF-alpha/mRNA, MCP-1/mRNA, renal nitrotyrosine/iNOS mRNA, and plasma cytokines were assessed. Renal TLR4 was gauged by mRNA and Western blot analysis. Both ARF models markedly hyperresponded to both LPS and LTA, culminating in exaggerated TNF-alpha, MCP-1, and iNOS/nitrotryosine increments. This was despite the fact that HO-1 exerted anti-inflammatory effects. TLR4 levels were either normal (cisplatin), or markedly depressed ( approximately 50%; rhabdomyolysis) in the ARF kidneys, despite the LPS hyperresponsive state. 1) The ARF kidney can hyperrespond to chemically dissimilar Toll ligands; 2) HO-1 does not prevent this response; 3) excess NO/protein nitrosylation can result; and 4) this hyperresponsiveness can be expressed with either normal or reduced renal TLR4 expression. This suggests that diverse signaling pathways may be involved. Topics: Acute Kidney Injury; Animals; Chemokine CCL2; Cisplatin; Endotoxins; Glycerol; Heme Oxygenase-1; Inflammation; Kidney; Lipopolysaccharides; Male; Metalloporphyrins; Mice; Nitric Oxide Synthase Type II; Protoporphyrins; Teichoic Acids; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation | 2006 |
Neuroprotection and enhanced recovery with hypericum perforatum extract after experimental spinal cord injury in mice.
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of inflammation. Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely, flavonoids and phenolic acids. Because polyphenolic compounds have high antioxidant potential, in this study, we evaluated the effect of H. perforatum (given at 30 mg . kg (-1)) in an experimental animal model of spinal cord injury, which was induced by the application of vascular clips to the dura via a four-level T5 through T8 laminectomy. The degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine, (c) poly(adenosine diphosphate-ribose), (d) neutrophils infiltration, and (e) the activation of signal transducer and activator transcription 3 was markedly reduced in spinal cord tissue obtained from H. perforatum extract-treated mice. We have also demonstrated that H. perforatum extract significantly ameliorated the recovery of limb function. Topics: Animals; Hypericum; Inflammation; Male; Mice; Neutrophil Infiltration; Oxidative Stress; Phytotherapy; Plant Extracts; Poly Adenosine Diphosphate Ribose; Recovery of Function; Signal Transduction; Spinal Cord Injuries; Tyrosine | 2006 |
Inhibitory effects of tilianin on the expression of inducible nitric oxide synthase in low density lipoprotein receptor deficiency mice.
We investigated the effect of tilianin upon inducible nitric oxide synthesis in the plasma of low-density lipoprotein receptor knock-out (Ldlr-/-) mice fed with high cholesterol diet and in primary peritoneal macrophages of Ldlr-/- mice. High cholesterol diet induced nitric oxide production in the plasma of Ldlr-/- mice. Tilianin reduced the level of nitric oxide (NO) in plasma from Ldlr-/- mice induced by the high cholesterol diet. Tilianin also inhibited the NO production from the primary culture of peritoneal macrophages treated with lipopolysaccharide. The inhibition of NO production was caused by the suppression of inducible nitric oxide synthase (iNOS) gene expression in peritoneal macrophages isolated from Ldlr-/- mice. Moreover, tilianin inhibited the transcriptional activation of iNOS promoter that has NF-kappaB binding element. Thus, these results provide the first evidence that tilianin inhibit iNOS expression and production of NO and may act as a potential anti-inflammatory agent. Topics: Animals; Atherosclerosis; Down-Regulation; Flavonoids; Glycosides; Inflammation; Male; Mice; Mice, Knockout; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Promoter Regions, Genetic; Receptors, LDL; Sinus of Valsalva; Tissue Distribution; Tyrosine | 2006 |
Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome.
Corosolic acid (CRA), a constituent of banaba leaves, has been reported to have anti-inflammatory and hypoglycemic activities. The aim of this study was to determine the effects of CRA on metabolic risk factors including obesity, hypertension, hyperinsulinemia, hyperglycemia, and hyperlipidemia together with oxidative stress and inflammation, all of which are characteristic of the SHR/NDmcr-cp (cp/cp) (SHR-cp) rat, an animal model of metabolic syndrome. Six-week-old male SHR-cp rats were fed a high fat diet containing 0.072% CRA for 14 weeks. Treatment with CRA lowered blood pressure, which was elevated in control animals, by 10% after 8 weeks, and serum free fatty acids by 21% after 2 weeks. CRA treatment resulted in decreases in the levels of the oxidative stress markers thiobarbituric acid-reactive substances and 8-hydroxydeoxyguanosine by 27% and 59%, respectively, after 2 weeks. CRA treatment also reduced the levels of myeloperoxidase markers, 3-nitrotyrosine and 3-chlorotyrosine by 38% and 39%, respectively, after 10 weeks, and tended to decrease the levels of high sensitivity C-reactive protein, a marker of inflammation, after 6 weeks. However, CRA had no effect on weight gain or hyperglycemia. These results demonstrate that CRA can ameliorate hypertension, abnormal lipid metabolism, and oxidative stress as well as the inflammatory state in SHR-cp rats. This implies that CRA can be beneficial for preventing atherosclerosis-related diseases that are an increasing health care problem worldwide. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Blood Glucose; Blood Pressure; Body Weight; Cholesterol; Deoxyguanosine; Disease Models, Animal; Fatty Acids, Nonesterified; Hypertension; Inflammation; Insulin; Male; Metabolic Syndrome; Molecular Structure; Musa; Oxidative Stress; Phytotherapy; Plant Extracts; Rats; Rats, Inbred SHR; Thiobarbituric Acid Reactive Substances; Triglycerides; Triterpenes; Tyrosine | 2006 |
Absence of peroxisome proliferators-activated receptors (PPAR)alpha enhanced the multiple organ failure induced by zymosan.
The peroxisome proliferator-activated receptor (PPAR) alpha is a member of the nuclear receptor superfamily of ligand-dependent transcription factors related to retinoid, steroid, and thyroid hormone receptors. The aim of the present study is to evaluate the role of PPAR-alpha receptor on the development of multiple-organ dysfunction syndrome (MODS) induced by zymosan. MODS was induced by peritoneal injection of zymosan (dose, 500 mg/kg i.p. as a suspension in saline) in PPAR-alpha wild-type (PPAR-alphaWT) and PPAR-alpha knockout (PPAR-alphaKO) mice, was assessed 18 h after the administration of zymosan, and was monitored for 12 days (for loss of body weight and mortality). A severe inflammatory process, induced by zymosan administration in wild-type mice, coincided with the damage of liver, kidney, pancreas, and small intestine. Myeloperoxidase activity, indicative of neutrophil infiltration, and lipid peroxidation were significantly increased in zymosan-treated wild-type mice. Zymosan in the wild-type mice also induced a significant increase in the plasma levels of nitrite/nitrate. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine and Fas ligand in the intestine of zymosan-treated wild-type mice. In contrast, the degree of (1) peritoneal inflammation and tissue injury, (2) nitrotyrosine formation and Fas ligand expression, and (3) neutrophil infiltration were markedly enhanced in intestinal tissue obtained from zymosan-treated PPAR-alphaKO mice. Zymosan-treated PPAR-alphaKO mice also showed a significantly increased mortality. Taken together, the present study clearly demonstrates that PPAR-alpha pathway modulates the degree of MODS associated with zymosan-induced nonseptic shock. Topics: Animals; Apoptosis; Fas Ligand Protein; Inflammation; Intestines; Kidney; Lipid Peroxidation; Mice; Mice, Knockout; Multiple Organ Failure; Neutrophil Infiltration; Nitric Oxide; PPAR alpha; Shock; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation; Zymosan | 2006 |
Superoxide, peroxynitrite and oxidative/nitrative stress in inflammation.
A considerable body of evidence suggests that formation of potent reactive oxygen species and resulting oxidative/nitrative stress play a major role in acute and chronic inflammation and pain. Much of the knowledge in this field has been gathered by the use of pharmacological and genetic approaches. In this mini review, we will evaluate recent advances made towards understanding the roles of reactive oxygen species in inflammation, focusing in particular on superoxide and peroxynitrite. Given the limited space to cover this broad topic, here we will refer the reader to comprehensive review articles whenever possible. Topics: Anti-Inflammatory Agents; Humans; Inflammation; Oxidative Stress; Peroxynitrous Acid; Reactive Oxygen Species; Superoxides; Tyrosine | 2006 |
Tempol diverts peroxynitrite/carbon dioxide reactivity toward albumin and cells from protein-tyrosine nitration to protein-cysteine nitrosation.
Tempol has been shown to protect experimental animals from injuries associated with excessive nitric oxide production. In parallel, tempol decreased the levels of protein-3-nitrotyrosine in the injured tissues, suggesting that it interacted with nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite. Relevantly, a few recent studies have shown that tempol catalytically diverts peroxynitrite/carbon dioxide reactivity toward phenol from nitration to nitrosation. To examine whether this shift occurs in biological environments, we studied the effects of tempol (10-100 microM) on peroxynitrite/carbon dioxide (1 mM/2 mM) reactivity toward proteins, native bovine serum albumin (BSA) (0.5-0.7 cys/mol) and reductively denatured BSA (7-19 cys/mol), and cells (J774 macrophages). Although not a true catalyst, tempol strongly inhibited protein-tyrosine nitration (70-90%) and protein-cysteine oxidation (20-50%) caused by peroxynitrite/carbon dioxide in BSA, denatured BSA, and cells while increasing protein-cysteine nitrosation (200-400%). Tempol consumption was attributed mainly to its reaction with protein-cysteinyl radicals. Most of the tempol, however, reacted with the radicals produced from peroxynitrite/carbon dioxide, that is, nitrogen dioxide and carbonate radical anion. Accordingly, tempol decreased the yields of BSA-cysteinyl and BSA-tyrosyl/tryptophanyl radicals, as well their decay products such as protein-3-nitrotyrosine. The parallel increase in protein-nitrosocysteine yields demonstrated that part of the peroxynitrite is oxidized to nitric oxide by the oxammonium cation produced from tempol oxidation by peroxynitrite/carbon dioxide-derived radicals. Protein-nitrosocysteine formation was shown to occur by radical and nonradical mechanisms in studies with a protein-cysteinyl radical trapper. These studies may contribute to the understanding of the protective effects of tempol in animal models of inflammation. Topics: Albumins; Animals; Antioxidants; Catalysis; Cyclic N-Oxides; Cysteine; Electrochemistry; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Free Radicals; Immunoblotting; Immunohistochemistry; Inflammation; Macrophages; Mice; Models, Biological; Models, Chemical; Nitric Oxide; Nitrites; Nitrogen; Oxygen; Peroxynitrous Acid; Serum Albumin, Bovine; Spin Labels; Time Factors; Tyrosine | 2005 |
Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands.
It is generally assumed that inflammatory bowel disease (IBD)-related carcinogenesis occurs as a result of chronic inflammation. We previously developed a novel colitis-related mouse colon carcinogenesis model initiated with azoxymethane (AOM) and followed by dextran sodium sulfate (DSS). In the present study we investigated whether a cyclooxygenase (COX)-2 inhibitor nimesulide and ligands for peroxisome proliferator-activated receptors (PPARs), troglitazone (a PPARgamma ligand) and bezafibrate (a PPARalpha ligand) inhibit colitis-related colon carcinogenesis using our model to evaluate the efficacy of these drugs in prevention of IBD-related colon carcinogenesis.. Female CD-1 (ICR) mice were given a single intraperitoneal administration of AOM (10 mg/kg body weight) and followed by one-week oral exposure of 2% (w/v) DSS in drinking water, and then maintained on the basal diets mixed with or without nimesulide (0.04%, w/w), troglitazone (0.05%, w/w), and bezafibrate (0.05%, w/w) for 14 weeks. The inhibitory effects of dietary administration of these compounds were determined by histopathological and immunohistochemical analyses.. Feeding with nimesulide and troglitazone significantly inhibited both the incidence and multiplicity of colonic adenocarcinoma induced by AOM/DSS in mice. Bezafibrate feeding significantly reduced the incidence of colonic adenocarcinoma, but did not significantly lower the multiplicity. Feeding with nimesulide and troglitazone decreased the proliferating cell nuclear antigen (PCNA)-labeling index and expression of beta-catenin, COX-2, inducible nitric oxide synthase (iNOS) and nitrotyrosine. The treatments increased the apoptosis index in the colonic adenocarcinoma. Feeding with bezafibrate also affected these parameters except for beta-catenin expression in the colonic malignancy.. Dietary administration of nimesulide, troglitazone and bezafibrate effectively suppressed the development of colonic epithelial malignancy induced by AOM/DSS in female ICR mice. The results suggest that COX-2 inhibitor and PPAR ligands could serve as an effective agent against colitis-related colon cancer development. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Apoptosis; Bezafibrate; Body Weight; Chromans; Colitis; Colonic Neoplasms; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Female; Hypolipidemic Agents; Immunohistochemistry; Inflammation; Injections, Intraperitoneal; Ligands; Male; Mice; Mice, Inbred ICR; Nitric Oxide Synthase Type II; Organ Size; Peroxisome Proliferator-Activated Receptors; Sulfonamides; Temperature; Thiazolidinediones; Troglitazone; Tyrosine; Vasodilator Agents | 2005 |
Selective quantification of free 3-nitrotyrosine in exhaled breath condensate in asthma using gas chromatography/tandem mass spectrometry.
Reactive nitrogen species can cause oxidative modifications of certain amino acid residues in proteins, notably the modification of tyrosine to 3-nitrotyrosine (3-NT), which is a potentially useful marker of oxidative stress. Since lung diseases are associated with airway inflammation and oxidative stress, quantification of 3-NT in exhaled breath condensate (EBC) may provide a non-invasive means for monitoring ongoing inflammatory processes. 3-NT-like immunoreactivity has previously been detected in EBC, but no definitive evidence for the presence of 3-NT in EBC is available. Here, a method based on gas chromatography/negative ion chemical ionization/tandem mass spectrometry was established for the quantification of free 3-NT in EBC. The detection limit was 0.56 pM (corresponding to 3.0 amol microl(-1) sample injected) and the method was found to give linear results (r2 > 0.999) in the concentration range of 0-5.0 nM. The coefficient of variation (CV) for within-day and between-day precision were 11 and 12%, respectively. No artifactual nitration was observed during sample processing. The method was applied to study subjects with asthma (n = 8), and healthy subjects (n = 10), but only a slight non-significant increase in 3-NT levels was found in the former group (median [interquartile ranges]; 99 [50-547] amol s(-1) vs. 75 [35-147] amol s(-1)). No correlation with exhaled nitric oxide (NO), pulmonary function or EBC levels of total protein was observed. The 3-NT levels were much lower compared to previously reported levels, based on immunochemical measurements. The method does not allow the simultaneous quantification of tyrosine in samples. Topics: Adult; Aged; Asthma; Biomarkers; Case-Control Studies; Exhalation; Female; Gas Chromatography-Mass Spectrometry; Humans; Inflammation; Male; Middle Aged; Oxidative Stress; Reproducibility of Results; Sensitivity and Specificity; Tyrosine | 2005 |
Mediation of in vivo glucose sensor inflammatory response via nitric oxide release.
In vivo glucose sensor nitric oxide (NO) release is a means of mediating the inflammatory response that may cause sensor/tissue interactions and degraded sensor performance. The NO release (NOr) sensors were prepared by doping the outer polymeric membrane coating of previously reported needle-type electrochemical sensors with suitable lipophilic diazeniumdiolate species. The Clarke error grid correlation of sensor glycemia estimates versus blood glucose measured in Sprague-Dawley rats yielded 99.7% of the points for NOr sensors and 96.3% of points for the control within zones A and B (clinically acceptable) on Day 1, with a similar correlation for Day 3. Histological examination of the implant site demonstrated that the inflammatory response was significantly decreased for 100% of the NOr sensors at 24 h. The NOr sensors also showed a reduced run-in time of minutes versus hours for control sensors. NO evolution does increase protein nitration in tissue surrounding the sensor, which may be linked to the suppression of inflammation. This study further emphasizes the importance of NO as an electroactive species that can potentially interfere with glucose (peroxide) detection. The NOr sensor offers a viable option for in vivo glucose sensor development. Topics: Animals; Biosensing Techniques; Blood Glucose; Calibration; Electrochemistry; Inflammation; Nitric Oxide; Rats; Rats, Sprague-Dawley; Tyrosine | 2005 |
Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain.
Oxidative stress contributes to ischemia/reperfusion neuronal damage in a consecutive 2-phase pattern: an immediate direct cytotoxic effect and subsequent redox-mediated inflammatory insult. The present study was designed to assess the neuroprotective mechanisms of edaravone, a novel free radical scavenger, through antioxidative and anti-inflammatory pathways, from the early period to up to 7 days after ischemia/reperfusion in mice.. Mice were subjected to 60-minute ischemia followed by reperfusion. They were divided into the edaravone group (n=72; with different schedules for first administration) and the vehicle (control) group (n=36). Infarct volume and neurological deficit scores were evaluated at several time points after ischemia. Immunohistochemical analysis for 4-hydroxy-2-nonenal (HNE), 8-hydroxy-deoxyguanosine (8-OHdG), ionized calcium-binding adapter molecule 1 (Iba-1), inducible NO synthase (iNOS), and nitrotyrosine were performed at 24 hours, 72 hours, or 7 days after reperfusion.. Edaravone, even when administrated 6 hours after onset of ischemia/reperfusion, significantly reduced the infarct volume (68.10+/-6.24%; P<0.05) and improved the neurological deficit scores (P<0.05) at 24 hours after reperfusion. Edaravone markedly suppressed the accumulation of HNE-modified protein and 8-OHdG at the penumbra area during the early period after reperfusion (P<0.05) and reduced microglial activation, iNOS expression, and nitrotyrosine formation at the late period.. Our results indicated that edaravone exerts an early neuroprotective effect through the early free radicals scavenging pathway and a late anti-inflammatory effect and suggested that edaravone is important for expansion of the therapeutic time window in stroke patients. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aldehydes; Animals; Anti-Inflammatory Agents; Antioxidants; Antipyrine; Brain; Brain Ischemia; Deoxyguanosine; DNA Damage; Edaravone; Electrophoresis, Polyacrylamide Gel; Free Radical Scavengers; Immunoblotting; Immunohistochemistry; Inflammation; Lipid Peroxidation; Male; Mice; Mice, Inbred C57BL; Neuroprotective Agents; Oxidative Stress; Reperfusion Injury; Time Factors; Tyrosine | 2005 |
Oxidative DNA damage induced by nitrotyrosine, a biomarker of inflammation.
Inflammation has been postulated as a risk factor for several cancers. 3-Nitrotyrosine is a biochemical marker for inflammation. We investigated the ability of nitrotyrosine and nitrotyrosine-containing peptides (nitroY-peptide) to induce DNA damage by the experiments using 32P-labeled DNA fragments obtained from the human p53 tumor suppressor gene and an HPLC-electrochemical detector. Nitrotyrosine and nitroY-peptide caused Cu(II)-dependent DNA damage in the presence of P450 reductase, which is considered to yield nitroreduction. Catalase inhibited DNA damage, suggesting the involvement of H2O2. Nitrotyrosine and nitroY-peptide increased 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, an indicator of oxidative DNA damage. Nitrotyrosine-containing peptides of histone induced 8-oxodG formation more efficiently than free nitrotyrosine. We propose the possibility that nitrotyrosine-induced H2O2 formation and DNA damage contribute to inflammation-associated carcinogenesis. Topics: 8-Hydroxy-2'-Deoxyguanosine; Biomarkers; Copper; Deoxyguanosine; DNA; DNA Damage; Free Radical Scavengers; Humans; Inflammation; NADP; NADPH-Ferrihemoprotein Reductase; Oxidative Stress; Phenanthrolines; Tyrosine | 2004 |
Mild hyperhomocysteinemia induced by feeding rats diets rich in methionine or deficient in folate promotes early atherosclerotic inflammatory processes.
High homocysteine levels in vitro promote the expression of inflammatory agents responsible for atherogenesis. We investigated the long-term effects of elevated plasma homocysteine on the expression of inflammatory molecules and attempted to elucidate their mechanisms. Male Sprague-Dawley rats (n = 36) were randomly divided into 3 groups, which received the control AIN-93G diet, the control diet plus 10 g/kg of L-methionine, or that diet without folate (0 m/kg) for 14 wk. Mild hyperhomocysteinemia was then induced in both experimental groups. The mildly hyperhomocysteinemic rats had markedly increased expression of intracellular adhesion molecule-1 (ICAM-1) in the aorta and elevated serum levels of monocyte chemoattractant protein-1 (MCP-1), compared to the control rats. The activation of nuclear factor kappaB and formation of nitrotyrosine in the aorta were greater in rats with mild hyperhomocysteinemia than in control rats. Serum levels of malonyldialdehyde (MDA) were higher in mildly hyperhomocysteinemic rats than in control rats. These results suggest that the oxidative stress resulting from elevated plasma homocysteine stimulates the activation of nuclear factor kappaB, and consequently increases the expression of the inflammatory factors in vivo. Such an effect may contribute to atherogenesis by enhancing the inflammatory response of the vascular endothelium. Topics: Animals; Aorta; Arteriosclerosis; Chemokine CCL2; Diet; Endothelium, Vascular; Folic Acid; Folic Acid Deficiency; Hyperhomocysteinemia; Inflammation; Intercellular Adhesion Molecule-1; Male; Malondialdehyde; Methionine; NF-kappa B; Nitric Oxide Synthase; Nitrites; Oxidative Stress; Rats; Rats, Sprague-Dawley; Tyrosine | 2004 |
High-density lipoproteins reduce the intestinal damage associated with ischemia/reperfusion and colitis.
High-density lipoproteins (HDLs) have been shown to reduce the organ injury and mortality in animal models of shock by reducing the expression of adhesion molecules and proinflammatory enzymes. However, there is limited evidence that HDL treatment reduces inflammation. As inflammation plays an important role in the development of colitis as well as ischemia/reperfusion (I/R) injury of the intestine, we have investigated the effects of HDL in animal models of associated with gut injury and inflammation (splanchnic artery occlusion [SAO] shock and dinitrobenzene sulfonic acid [DNBS]-induced colitis). We report here for the first time that the administration of reconstituted HDLs (recHDLs; 80 mg/kg i.v. bolus 30 min prior to ischemia in the SAO-shock model or 40 mg/kg i.v. every 24 h in the colitis model) exerts potent anti-inflammatory effects (e.g., reduced inflammatory cell infiltration and histological injury, and delayed the development of the clinical signs) in vivo. Furthermore, recHDL reduced the staining for nitrotyrosine and poly(ADP-ribose) (immunohistochemistry) and the expression of intercellular adhesion molecule-1 in the ileum of SAO-shocked rats and in the colon from DNBS-treated rats. Thus, recHDL reduces the inflammation caused by intestinal I/R and colitis. HDLs may represent a novel therapeutic approach for the therapy of inflammation of the gut. Topics: Animals; Colitis; Dinitrofluorobenzene; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Intestines; Lipoproteins, HDL; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Tyrosine | 2004 |
Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species.
High density lipoprotein (HDL) is the major carrier of lipid hydroperoxides in plasma, but it is not yet established whether HDL proteins are damaged by reactive nitrogen species in the circulation or artery wall. One pathway that generates such species involves myeloperoxidase (MPO), a major constituent of artery wall macrophages. Another pathway involves peroxynitrite, a potent oxidant generated in the reaction of nitric oxide with superoxide. Both MPO and peroxynitrite produce 3-nitrotyrosine in vitro. To investigate the involvement of reactive nitrogen species in atherogenesis, we quantified 3-nitrotyrosine levels in HDL in vivo. The mean level of 3-nitrotyrosine in HDL isolated from human aortic atherosclerotic intima was 6-fold higher (619 +/- 178 micromol/mol Tyr) than that in circulating HDL (104 +/- 11 micromol/mol Tyr; p < 0.01). Immunohistochemical studies demonstrated striking colocalization of MPO with epitopes reactive with an antibody to 3-nitrotyrosine. However, there was no significant correlation between the levels of 3-chlorotyrosine, a specific product of MPO, and those of 3-nitrotyrosine in lesion HDL. We also detected 3-nitrotyrosine in circulating HDL, and linear regression analysis demonstrated a strong correlation between the levels of 3-chlorotyrosine and levels of 3-nitrotyrosine. These observations suggest that MPO promotes the formation of 3-chlorotyrosine and 3-nitrotyrosine in circulating HDL but that other pathways also produce 3-nitrotyrosine in atherosclerotic tissue. Levels of HDL isolated from plasma of patients with established coronary artery disease contained twice as much 3-nitrotyrosine as HDL from plasma of healthy subjects, suggesting that nitrated HDL might be a marker for clinically significant vascular disease. The detection of 3-nitrotyrosine in HDL raises the possibility that reactive nitrogen species derived from nitric oxide might promote atherogenesis. Thus, nitrated HDL might represent a previously unsuspected link between nitrosative stress, atherosclerosis, and inflammation. Topics: Arteries; Arteriosclerosis; Coronary Artery Disease; Coronary Vessels; Dose-Response Relationship, Drug; Epitopes; Gas Chromatography-Mass Spectrometry; Humans; Immunohistochemistry; Inflammation; Lipid Peroxides; Lipoproteins, HDL; Mass Spectrometry; Nitric Oxide; Nitrogen; Oxygen; Peroxidase; Peroxynitrous Acid; Reactive Nitrogen Species; Taurine; Time Factors; Tunica Intima; Tyrosine | 2004 |
Peroxynitrite, a product between nitric oxide and superoxide anion, plays a cytotoxic role in the development of post-bypass systemic inflammatory response.
Cardiopulmonary bypass (CPB) is known to induce post-bypass systemic inflammatory response. Peroxynitrite (ONOO-) is a potent oxidant formed by a rapid reaction between nitric oxide (NO) and superoxide anion. We hypothesized that ONOO- plays a role in the development of post-bypass systemic inflammatory response and examined the efficacy of ONOO- scavenger in a rat-CPB model.. Adult Sprague-Dawley rats underwent 60 min of CPB (100 ml/kg per min, 34 degrees C). Group-P (n = 10) received 50 mg/kg of ONOO- scavenger, quercetin, intraperitoneally 24 h before the initiation of CPB, and Group-C (n = 10) served as controls.. There were significant time-dependent changes in plasma nitrate+nitrite (NOx), the percentage ratio of nitrotyrosine to tyrosine (%NO2-Tyr: an indicator of ONOO- formation), interleukin (IL)-6, IL-8, and respiratory index (RI). There were significant differences in %NO2-Tyr between the groups both at CPB termination (Group-P vs C; 0.26+/-0.07 vs 0.55+/-0.11%, P < 0.01) and 3 h after CPB termination (0.65+/-0.14 vs 1.46+/-0.25%, P < 0.01); whereas there were no significant differences in NOx between the groups at any sampling point ((at CPB termination) Group-P vs C; 31.6+/-4.3 vs 32.7+/-4.1 micromol/l, (3 h after CPB termination) Group-P vs C; 47.8+/-4.9 vs 51.7+/-5.3 micromol/l). Group-P showed significantly lower plasma IL-6 (176.8+/-44.3 vs 302.4+/-78.1 pg/ml, P < 0.01), IL-8 (9.45+/-1.78 vs 16.42+/-2.53 ng/ml, P < 0.01) and RI (1.07+/-0.19 vs 1.54+/-0.25, P < 0.01) 3 h after CPB termination, though there were no significant differences between the groups at CPB termination.. These results suggest that ONOO- plays a crucial role in the development of post-bypass systemic inflammatory response and the pretreatment with quercetin has a potential benefit to avoid deleterious effects of ONOO-. Topics: Animals; Cardiopulmonary Bypass; Free Radical Scavengers; Inflammation; Interleukin-6; Interleukin-8; Male; Nitrates; Nitric Oxide; Nitrites; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Superoxides; Time Factors; Tyrosine | 2004 |
Intermittent high glucose enhances ICAM-1, VCAM-1, E-selectin and interleukin-6 expression in human umbilical endothelial cells in culture: the role of poly(ADP-ribose) polymerase.
It has been previously reported that endothelial cells exposed to constant high concentrations of glucose upregulate the expression of adhesion molecules. Moreover, it has been suggested that this phenomenon is related to generation of oxidative stress. It has also been suggested that oxidative injuries, related to high glucose, induce the activation of the enzyme poly ADP ribose polymerase (PARP), which can promote the expression of adhesion molecules and the generation of inflammation. Recent in-vivo and in-vitro evidence suggests that oscillation of glucose may play an autonomous and direct role in favoring the development of cardiovascular complications in diabetes. In this study we have investigated the effects of constantly high and intermittently high glucose on nitrotyrosine formation (a marker of nitrosative stress) and adhesion molecule (ICAM-1, VCAM-1 and E-selectin), as well as on interleukin (IL)-6 expression in human umbilical vein endothelial cells, either in the presence or in the absence of PJ34, a potent inhibitor of PARP. We found that oscillating glucose was more effective in triggering the generation of nitrotyrosine and inducing the expression of adhesion molecules and IL-6 than stable high glucose. Pharmacological inhibition of PARP suppressed both nitrotyrosine formation, adhesion molecule expression and IL-6 to the levels seen in the normal glucose conditions. Thus, PARP activation appears to be involved in both promoting nitrosative stress and upregulating adhesion molecules and inflammation in endothelial cells exposed to oscillating high glucose conditions. Topics: Blotting, Northern; Cells, Cultured; E-Selectin; Endothelium, Vascular; Enzyme Activation; Enzyme-Linked Immunosorbent Assay; Glucose; Humans; Inflammation; Intercellular Adhesion Molecule-1; Interleukin-6; Nitrogen; Oscillometry; Oxidative Stress; Poly(ADP-ribose) Polymerases; RNA, Messenger; Time Factors; Tyrosine; Umbilical Veins; Up-Regulation; Vascular Cell Adhesion Molecule-1 | 2004 |
Enhanced lung injury and delayed clearance of Pneumocystis carinii in surfactant protein A-deficient mice: attenuation of cytokine responses and reactive oxygen-nitrogen species.
Surfactant protein A (SP-A), a member of the collectin family, selectively binds to Pneumocystis carinii and mediates interactions between pathogen and host alveolar macrophages in vitro. To test the hypothesis that mice lacking SP-A have delayed clearance of Pneumocystis organisms and enhanced lung injury, wild-type C57BL/6 (WT) and SP-A-deficient mice (SP-A(-/-)) with or without selective CD4(+)-T-cell depletion were intratracheally inoculated with Pneumocystis organisms. Four weeks later, CD4-depleted SP-A-deficient mice had developed a more severe Pneumocystis infection than CD4-depleted WT (P. carinii pneumonia [PCP] scores of 3 versus 2, respectively). Whereas all non-CD4-depleted WT mice were free of PCP, intact SP-A(-/-) mice also had evidence of increased organism burden. Pneumocystis infection in SP-A-deficient mice was associated histologically with enhanced peribronchial and/or perivascular cellularity (score of 4 versus 2, SP-A(-/-) versus C57BL/6 mice, respectively) and a corresponding increase in bronchoalveolar lavage (BAL) cell counts. Increases in SP-D content, gamma interferon, interleukin-4, interleukin-5, and tumor necrosis factor alpha in BAL fluid occurred but were attenuated in PCP-infected SP-A(-/-) mice compared to WT mice. There were increases in total BAL NO levels in both infected groups, but nitrite levels were higher in SP-A(-/-) mice, indicating a reduction in production of higher oxides of nitrogen that was also reflected in lower levels of 3-nitrotyrosine staining in the SP-A(-/-) group. We conclude that despite increases in inflammatory cells, SP-A-deficient mice infected with P. carinii exhibit an enhanced susceptibility to the organism and attenuated production of proinflammatory cytokines and reactive oxygen-nitrogen species. These data support the concept that SP-A is a local effector molecule in the lung host defense against P. carinii in vivo. Topics: Animals; Bronchoalveolar Lavage Fluid; Cytokines; Humans; Inflammation; Lung; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Nitric Oxide; Pneumocystis carinii; Pneumocystis Infections; Pulmonary Surfactant-Associated Protein A; Pulmonary Surfactant-Associated Protein D; Reactive Nitrogen Species; Reactive Oxygen Species; Tyrosine | 2004 |
Role of inducible nitric oxide synthase in N-methyl-d-aspartic acid-induced strio-nigral degeneration.
N-Methyl-d-aspartate (NMDA)-induced striatal excitotoxicity is mediated by nitric oxide (NO) but the role of inflammatory mechanisms and inducible nitric oxide synthase (iNOS) induction is not clear. Unilateral intrastriatal administration of NMDA to rats resulted in the loss of intrinsic striatal neurones and the degeneration of NADPH-diaphorase positive interneurones within 24 h. NMDA administration caused activation of glial fibrillary acidic protein positive astroglial cells and MAC-1 ir microglia. Marked iNOS immunoreactivity was expressed within both astroglial and microglial cells and there was marked cellular labelling for 3-nitrotyrosine (3-NT). One month following the NMDA lesion, administration of (+)-amphetamine (AMPH) produced a circling response in rats. Pre-treatment of rats with the iNOS inhibitor aminoguanidine (AG) decreased the extent of NMDA-induced striatal cell loss at 24 h and reduced 3-NT expression but was without effect on glial cell activation. AG pre-treatment also prevented the onset of rotation to AMPH at 30 days following NMDA lesioning. NMDA administration unexpectedly caused a loss of tyrosine hydroxylase immunoreactive (TH-ir) fibres in the striatum at 24 h and at 30 days the number of TH-ir cells were decreased in the substantia nigra. The loss of nigral cells was prevented by AG pre-treatment. This study demonstrates a role for iNOS induction in NO-mediated NMDA excitotoxicity to rat striatum and suggests that inflammatory mechanisms play a key role in this process. Topics: Animals; Functional Laterality; Guanidines; Immunohistochemistry; Inflammation; Interneurons; Male; Motor Activity; N-Methylaspartate; NADPH Dehydrogenase; Neostriatum; Nerve Degeneration; Neuroglia; Neurons; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Rats; Rats, Wistar; Tyrosine | 2004 |
Mechanism of vasculitis and aneurysms in Kawasaki disease: role of nitric oxide.
NO in vivo has both beneficial and nonbeneficial effects depending on site and concentration. Peroxynitrite, resulting from the reaction of NO with superoxide radical, causes cellular damage. Nitrotyrosine, end product of NO's toxic effects on cellular proteins, is a stable compound that can be used to detect evidence of harmful quantities of NO. We sought to detect nitrotyrosine in coronary arterioles of DBA/2 mice injected intraperitoneally with Lactobacillus casei cell wall. The inflammatory response induced occurred in perivascular fashion and involved mainly macrophages. It was variable according to time points, being severe on days 10 and 14 and mild to moderate on days 3 and 7. Few basal inflammatory cells appeared in controls injected with phosphate-buffered saline. Western immunoblots of homogenized hearts on days 10 and 14 demonstrated specific nitrated proteins. Immunohistochemistry of frozen sections of diseased hearts showed positive immunoreactivity for nitrotyrosine in coronary arterioles at the same time points. These findings were absent in the controls. We also determined the expression of inducible nitric oxide synthase (iNOS) in controls on days 10 and 14. iNOS colocalized with nitrotyrosine in perivascular macrophages and coronary arterioles of treated mice. Additionally, aneurysms were found on day 10 and intracardiac hemorrhage with consequent death on day 14. These observations supply evidence that NO through its reactive product, peroxynitrite, and its antigen/tissue marker, nitrotyrosine, is directly involved in coronary arteritis and aneurysm development in mice models of Kawasaki disease (KD). This article shows that macrophages are central to this and bolsters the likelihood of L. casei being the cause of KD. Topics: Aneurysm; Animals; Blotting, Western; Cell Wall; Coronary Vessels; Disease Models, Animal; Hemorrhage; Immunohistochemistry; Inflammation; Lacticaseibacillus casei; Macrophages; Male; Mice; Mucocutaneous Lymph Node Syndrome; Myocardium; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Thrombosis; Time Factors; Tyrosine; Vasculitis | 2003 |
Protective effects of anthocyanins from blackberry in a rat model of acute lung inflammation.
Anthocyanins are a group of naturally occuring phenolic compounds related to the coloring of plants, flowers and fruits. These pigments are important as quality indicators, as chemotaxonomic markers and for their antioxidant activities. Here, we have investigated the therapeutic efficacy of anthocyanins contained in blackberry extract (cyanidin-3-O-glucoside represents about 80% of the total anthocyanin contents) in an experimental model of lung inflammation induced by carrageenan in rats. Injection of carrageenan into the pleural cavity elicited an acute inflammatory response characterized by fluid accumulation which contained a large number of neutrophils as well as an infiltration of polymorphonuclear leukocytes in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate (NOx) and prostaglandin E2 (PGE2). All parameters of inflammation were attenuated in a dose-dependent manner by anthocyanins (10, 30 mg kg(-1) 30 min before carrageenan). Furthermore, carrageenan induced an upregulation of the adhesion molecule ICAM-1, nitrotyrosine and poly (ADP-ribose) synthetase (PARS) as determined by immunohistochemical analysis of lung tissues. The degree of staining was lowered by anthocyanins treatment. Thus, the anthocyanins contained in the blackberry extract exert multiple protective effects in carrageenan-induced pleurisy. Topics: Acute Disease; Animals; Anthocyanins; Carrageenan; Dinoprostone; Exudates and Transudates; Fruit; Glucosides; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Lung; Male; Malondialdehyde; Neutrophils; Nitrates; Nitrites; Peroxidase; Plant Extracts; Pleurisy; Poly(ADP-ribose) Polymerases; Rats; Rats, Sprague-Dawley; Time Factors; Tyrosine | 2003 |
Pyrrolidine dithiocarbamate reduces the severity of cerulein-induced murine acute pancreatitis.
The nuclear factor-kappaB (NF-kappaB) is a transcription factor that plays a pivotal role in the induction of genes involved in the response to injury and inflammation. Dithiocarbamates are antioxidants that are potent inhibitors of NF-kappaB. This study tested the hypothesis that pyrrolidine dithiocarbamate (PDTC) attenuates experimental acute pancreatitis. Intraperitoneal injection of cerulein in mice resulted in severe, acute pancreatitis characterized by edema, neutrophil infiltration, tissue hemorrhage and necrosis, and elevated serum levels of amylase and lipase. Infiltration of pancreatic and lung tissue with neutrophils (measured as increase in myeloperoxidase activity) was associated with enhanced lipid peroxidation (increased tissue levels of malondialdehyde). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for nitrotyrosine and intracellular adhesion molecule-1 in the pancreas and lung of cerulein-treated mice. In contrast, the degree of 1) pancreas and lung injury, 2) upregulation/expression of intracellular adhesion molecule-1, 3) staining for nitrotyrosine, and 4) lipid peroxidation was markedly reduced by pretreatment with PDTC. This study demonstrates that prevention of the activation of NF-kappaB by PDTC ameliorates the tissue injury associated with experimental murine acute pancreatitis and provides an important insight into the molecular biology of acute pancreatitis. Topics: Amylases; Animals; Antioxidants; Blotting, Western; Ceruletide; Edema; I-kappa B Proteins; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Lipase; Lipid Peroxidation; Male; Mice; Necrosis; Neutrophils; NF-kappa B; NF-KappaB Inhibitor alpha; Pancreatitis; Peroxidase; Pyrrolidines; Rats; Thiocarbamates; Tyrosine; Up-Regulation | 2003 |
Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression.
QR-32 tumor cells, a clone derived from a murine fibrosarcoma, are poorly tumorigenic and nonmetastatic when injected into syngeneic C57BL/6 mice. However, they are converted to highly malignant ones once they have grown in vivo after being co-implanted in a subcutaneous site with a foreign body, a gelatin sponge. Early phase of inflammation induced by the gelatin sponge participates in the conversion and histological analysis shows predominant infiltration of neutrophils. The objective of this study was to determine whether the depletion of the infiltrating neutrophils has any effect on the tumor progression. Intraperitoneal administration of a monoclonal anti-granulocyte antibody, RB6-8C5 (RB6), depleted neutrophils from both the peripheral blood circulation and the local inflamed site in mice with co-implantation of QR-32 tumor cells and gelatin sponge. The RB6 administration did not inhibit either tumor development or growth of QR-32 tumor cells. In contrast, tumor cell lines established from RB6-administered mice showed a significant decrease in metastatic incidence as compared with the tumor cell lines obtained from the mice with administration of control rat IgG or saline. Metastatic ability was significantly suppressed when RB6 had been administered in the early phase (from day -2 to day 6 after implantation); however, the administration in the middle (from day 6 to day 14) or late (from day 14 to day 22) phase did not affect the metastatic ability. We confirmed the phenomena by using integrin beta(2) knockout mice that had impaired neutrophil infiltration into inflamed sites. In the knockout mice, neutrophils hardly infiltrated into the gelatin sponge and the tumors showed dramatically suppressed metastatic phenotype as compared with those in wild-type mice or nude mice. Immunohistochemical analysis demonstrated that expressions of 8-hydroxy-2'-deoxyguanosine and nitrotyrosine were parallel to those in the presence of neutrophils. These results suggested that inflammation, especially when neutrophils infiltrate into tumor tissue, is primarily important for benign tumor cells to acquire metastatic phenotype. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antibodies, Monoclonal; Blood Cells; CD18 Antigens; Cell Line, Tumor; Complement System Proteins; Cytotoxicity, Immunologic; Deoxyguanosine; Disease Progression; Drug Administration Schedule; Fibrosarcoma; Granulocytes; Immunohistochemistry; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Neutrophil Infiltration; Neutrophils; Phenotype; Time Factors; Tyrosine | 2003 |
Dual role of inducible nitric oxide synthase in acute asbestos-induced lung injury.
Reactive oxygen and nitrogen species have been implicated in the pathogenesis of asbestos fibers-associated pulmonary diseases. By comparing the responses of inducible nitric oxide synthase (iNOS) knockout and wild-type mice we investigated the consequences of iNOS expression for the development of the inflammatory response and tissue injury upon intratracheal instillation of asbestos fibers. Exposure to asbestos fibers resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. Moreover, iNOS knockout mice exhibited an exceeded pulmonary expression and production of TNF-alpha as well as a higher influx of neutrophils into the alveolar space than wild-type mice. In contrast, iNOS knockout animals displayed an attenuated oxidant-related tissue injury reflected in a decrease in protein leakage and LDH release into the alveolar space as well as weaker nitrotyrosine staining of lung tissue compared to wild-type mice. Data presented here indicate that iNOS-derived NO exerts a dichotomous role in acute asbestos-induced lung injury in that iNOS deficiency resulted in an exacerbated inflammatory response but improved oxidant-promoted lung tissue damage. Topics: Acute Disease; Animals; Asbestos; Asbestosis; Bronchoalveolar Lavage Fluid; Chemotaxis; Enzyme Induction; Gene Expression Regulation; Inflammation; L-Lactate Dehydrogenase; Lung; Mice; Mice, Inbred C57BL; Mice, Knockout; Neutrophils; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oxidation-Reduction; Peroxidase; RNA, Messenger; Tumor Necrosis Factor-alpha; Tyrosine | 2002 |
Absence of endogenous interleukin-6 enhances the inflammatory response during acute pancreatitis induced by cerulein in mice.
Interleukin-6 (IL-6) exerts a wide spectrum of regulatory activities during immune and inflammatory responses. The aim of this study was to investigate the role of endogenous IL-6 in the inflammatory response associated with acute pancreatitis. Acute pancreatitis was induced by hourly (x5) i.p. injections of cerulein (50 microg/kg, suspended in saline solution) in IL-6 deficient mice (IL-6-KO) and wild-type (IL-6WT) littermates. IL-6KO mice exhibited a more severe tissue injury and a higher rate of mortality and when compared to IL-6WT mice. Acute pancreatitis was characterized by edema, neutrophil infiltration, tissue hemorrhage and cell necrosis, upregulation of P-selectin and intercellular adhesion molecule-1 (ICAM-1), as well as increases in the serum levels of amylase and lipase. The degree of oxidative and nitrosative tissue damage was significantly greater in IL-6KO mice than in wild-type littermates, as indicated by higher tissue levels of malondialdehyde and nitrosylated proteins. Plasma levels of the inflammatory cytokines tumour necrosis factor-alpha and interleukin-1beta were also greatly enhanced in IL-6KO mice when compared to wild-type mice. These events were correlated with an increase in the staining (immunoreactivity) for poly (ADP-ribose) polymerase (PARP) in the pancreas of cerulein-treated IL-6WT. The staining for PARP was more pronounced in IL-6KO mice subjected to acute pancreatitis than in the corresponding WT mice. These data demonstrate that endogenous IL-6 exerts an anti-inflammatory role during acute pancreatitis, possibly by regulating the expression of adhesion molecules, the subsequent adhesion and activation of neutrophils and finally the generation of cytokine and reactive oxygen or nitrogen species. Topics: Amylases; Animals; Ceruletide; Enzyme-Linked Immunosorbent Assay; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Interleukin-1; Interleukin-6; Lipase; Lipid Peroxidation; Male; Mice; Mice, Knockout; Microscopy, Fluorescence; P-Selectin; Pancreas; Pancreatitis; Peroxidase; Phenotype; Poly(ADP-ribose) Polymerases; Reactive Oxygen Species; Time Factors; Tumor Necrosis Factor-alpha; Tyrosine | 2002 |
Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases.
Nitrotyrosine (NO(2)Tyr) formation is a hallmark of acute and chronic inflammation and has been detected in a wide variety of human pathologies. However, the mechanisms responsible for this posttranslational protein modification remain elusive. While NO(2)Tyr has been considered a marker of peroxynitrite (ONOO(-)) formation previously, there is growing evidence that heme-protein peroxidase activity, in particular neutrophil-derived myeloperoxidase (MPO), significantly contributes to NO(2)Tyr formation in vivo via the oxidation of nitrite (NO(2)(-)) to nitrogen dioxide (.NO(2)). Coronary arteries from a patient with coronary artery disease, liver and lung tissues from a sickle cell disease patient, and an open lung biopsy from a lung transplant patient undergoing rejection were analyzed immunohistochemically to map relative tissue distributions of MPO and NO(2)Tyr. MPO immunodistribution was concentrated along the subendothelium in coronary tissue and hepatic veins as well as in the alveolar epithelial compartment of lung tissue from patients with sickle cell disease or acute rejection. MPO immunoreactivity strongly colocalized with NO(2)Tyr formation, which was similarly distributed in the subendothelial and epithelial regions of these tissues. The extracellular matrix protein fibronectin (FN), previously identified as a primary site of MPO association in vascular inflammatory reactions, proved to be a major target protein for tyrosine nitration, with a strong colocalization of MPO, NO(2)Tyr, and tissue FN occurring. Finally, lung tissue from MPO(-/-) mice, having tissue inflammatory responses stimulated by intraperitoneal zymosan administration, revealed less subendothelial NO(2)Tyr immunoreactivity than tissue from wild-type mice, confirming the significant role that MPO plays in catalyzing tissue nitration reactions. These observations reveal that (i) sequestration of neutrophil-derived MPO in vascular endothelial and alveolar epithelial compartments is an important aspect of MPO distribution and action in vivo, (ii) MPO-catalyzed NO(2)Tyr formation occurs in diverse vascular and pulmonary inflammatory pathologies, and (iii) extracellular matrix FN is an important target of tyrosine nitration in these inflammatory processes. Topics: Animals; Blood Vessels; Coronary Vessels; Disease Models, Animal; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Peroxidase; Tyrosine | 2002 |
Aldosterone-induced inflammation in the rat heart : role of oxidative stress.
Heart failure and hypertension have each been linked to an induction of oxidative stress transduced by neurohormones, such as angiotensin II and catecholamines. Herein, we hypothesized that aldosterone (ALDO) likewise induces oxidative stress and accounts for a proinflammatory/fibrogenic phenotype that appears at vascular and nonvascular sites of injury found in both right and left ventricles in response to ALDO/salt treatment and that would be sustained with chronic treatment. Uninephrectomized rats received ALDO (0.75 micro g/hour) together with 1% dietary NaCl, for 3, 4, or 5 weeks. Other groups received this regimen in combination with an ALDO receptor antagonist, spironolactone (200 mg/kg p.o. daily), or an antioxidant, either pyrrolidine dithiocarbamate (PDTC) (200 mg/kg s.c. daily) or N-acetylcysteine (NAC) (200 mg/kg i.p. daily). Unoperated and untreated age- and gender-matched rats served as controls. We monitored spatial and temporal responses in molecular and cellular events using serial, coronal sections of right and left ventricles. Our studies included: assessment of systolic blood pressure; immunohistochemical detection of NADPH oxidase expression and activity; analysis of redox-sensitive nuclear factor-kappaB activation; in situ localization of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and tumor necrosis factor-alpha mRNA expression; monitoring cell growth and infiltration of macrophages and T cells; and analysis of the appearance and quantity of fibrous tissue accumulation. At week 3 of ALDO/salt treatment and comparable to controls, there was no evidence of oxidative stress or pathological findings in the heart. However, at weeks 4 and 5 of treatment, increased gp91(phox) and 3-nitrotyrosine expression and persistent activation of RelA were found in endothelial cells and inflammatory cells that appeared in the perivascular space of intramural coronary arteries and at sites of lost cardiomyocytes in both ventricles. Coincident in time and space with these events was increased mRNA expression of intercellular adhesion molecule-1, monocyte chemoattractant protein-1, and tumor necrosis factor-alpha. Macrophages, lymphocytes, and proliferating endothelial and vascular smooth muscle cells and fibroblast-like cells were seen at each of these sites, together with an accumulation of fibrillar collagen, or fibrosis, as evidenced by a significant increase in ventricular collagen volume fraction. Co-treatment with spiron Topics: Aldosterone; Animals; Antioxidants; Cardiomyopathies; Cell Division; Cell Movement; Fibrosis; Heart; Immunologic Factors; Inflammation; Lymphocytes; Macrophages; Male; Mineralocorticoid Receptor Antagonists; Monocytes; Myocardium; NADPH Oxidases; NF-kappa B; Oxidative Stress; Rats; Rats, Sprague-Dawley; RNA, Messenger; Spironolactone; Tyrosine | 2002 |
Preoperative glutamine administration induces heat-shock protein 70 expression and attenuates cardiopulmonary bypass-induced inflammatory response by regulating nitric oxide synthase activity.
Heat-shock protein 70 (HSP70) plays a major role in the pathophysiology of inflammation, and the induction of HSP70 before the onset of inflammation can reduce organ damage through a self-protective system. Glutamine is known to be an inducer of HSP70, and its preoperative administration seems useful in attenuating cardiopulmonary bypass (CPB)-induced inflammatory response.. Adult male Sprague-Dawley rats (group G, received 100 mg/kg of glutamine via the right jugular vein 3 times per day for 1 week and just before the initiation of CPB; group C served as control) underwent CPB (60 minutes, 100 mL/kg per minute, 34 degrees C) and were killed 3 hours after the termination of CPB. Group G showed significantly lower plasma concentrations of interleukin-6 and interleukin-8 after CPB termination. Myocardial and respiratory damages were significantly attenuated in group G, as evidenced by Langendorff perfusion, respiratory index, and neutrophil adherence. HSP70 expressions in the heart, lung, and liver were detected only in group G before CPB and were markedly stronger in group G 3 hours after CPB termination. Although plasma nitrate+nitrite concentrations were not significantly different between the groups, endothelial-constitutive nitric oxide synthase (NOS) activity was markedly preserved and inducible NOS activity was markedly attenuated in the tissues of group G.. These results suggest that preoperative glutamine administration induces HSP70 expression before CPB and attenuates CPB-induced inflammation by regulating NOS activity, which may be a prospective management for conferring tolerance to CPB-induced inflammatory response through a self-protective mechanism. Topics: Animals; Cardiopulmonary Bypass; Cell Adhesion; Cytokines; Glutamine; Heart; Hemodynamics; HSP70 Heat-Shock Proteins; Inflammation; Male; Myocardium; Neutrophils; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitrogen Compounds; Preoperative Care; Rats; Rats, Sprague-Dawley; Respiration; Tyrosine | 2002 |
Gamma-tocopherol supplementation inhibits protein nitration and ascorbate oxidation in rats with inflammation.
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT. Topics: alpha-Tocopherol; Animals; Ascorbic Acid; Chromatography, High Pressure Liquid; gamma-Tocopherol; Inflammation; Kidney; Male; Nitrogen; Oxygen; Proteins; Rats; Rats, Inbred F344; Tissue Distribution; Tyrosine; Vitamin E; Zymosan | 2002 |
The protective role of nitric oxide in a neurotoxicant-induced demyelinating model.
Demyelination is often associated with acute inflammatory events involving the recruitment-activation of microglia/macrophage, astrocytes, and leukocytes. The ultimate role of inflammatory products in demyelinating disease and in the survival of oligodendrocytes, the myelin forming cells, is unresolved. The current study examines the role of inducible NO synthase (iNOS)-derived NO in a neurotoxicant-induced model of demyelination. NO levels were greatly elevated in the midline corpus callosum during demyelination in genetically intact C57BL/6 mice, and this NO was due solely to the induction of iNOS, as the correlates of NO were not found in mice lacking iNOS. C57BL/6 mice lacking iNOS exhibited more demyelination, but did not display an increased overall cellularity in the corpus callosum, attributable to an unimpeded microglia/macrophage presence. An enhanced course of pathology was noted in mice lacking iNOS. This was associated with a greater depletion of mature oligodendrocytes, most likely due to apoptosis of oligodendrocytes. Microglia and astrocytes did not undergo apoptosis during treatment. Our results suggest a moderately protective role for NO during acute inflammation-association demyelination. Topics: Animals; Apoptosis; Cell Movement; Corpus Callosum; Cuprizone; Demyelinating Diseases; Inflammation; Macrophages; Mice; Mice, Inbred C57BL; Mice, Knockout; Microglia; Microscopy, Fluorescence; Neuroprotective Agents; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oligodendroglia; Tyrosine | 2002 |
Intra-luminal exposure of murine airways to peroxynitrite causes inflammation but not hyperresponsiveness.
There is increasing evidence for the involvement of reactive nitrogen species like peroxynitrite (ONOO-) in airway pathology, for example during allergic airway inflammation. Therefore, the effect of peroxynitrite exposure on airway responsiveness and inflammation was studied.. Male BALB/c mice were treated intra-tracheally with authentic peroxynitrite and the peroxynitrite donor 3-morpholinosydnonimine (SIN-1). Control animals received decomposed solutions of peroxynitrite and SIN- 1.. Airway inflammation was monitored by bronchoalveolar lavage, three and seven days after administration. Airway responsiveness to methacholine and acetylcholine was measured on day 1, 2, 3 and 7 post administration using whole body plethysmography.. Intra-tracheal administration of peroxynitrite 200 microM in 50 microl phosphate buffered saline (PBS) induced a significant increase in macrophages (>35%, p < 0.05) in the airway lumen three days after administration. In contrast, neither intra-tracheal administration of authentic peroxynitrite (up to 5 mM) nor the peroxynitrite donor SIN-1 (1 mM, both intra-tracheal and nebulized) changed airway responsiveness to methacholine. Moreover, peroxynitrite (5 mM) did not alter responsiveness to acetylcholine.. Administration of peroxynitrite directly into the airways of BALB/c mice, induces airway inflammation, but not airway hyperresponsiveness. It is suggested that antioxidants in the epithelial lining fluid and/or the epithelium itself form an efficient barrier, which prevents peroxynitrite from reaching putative targets in the airway interstitium. Topics: Acetylcholine; Animals; Bronchi; Bronchial Hyperreactivity; Inflammation; Male; Methacholine Chloride; Mice; Mice, Inbred BALB C; Molsidomine; Peroxynitrous Acid; Trachea; Tyrosine | 2002 |
alpha-Phenyl-N-tert-butylnitrone provides protection from dextran sulfate sodium-induced colitis in mice.
Nuclear factor-kappaB (NF-kappaB)-dependent up-regulation of inflammatory cytokines and inducible nitric oxide (iNOS) occurs in inflammatory bowel disease. We investigated the effect of alpha-phenylN-tert-butylnitrone (PBN), a spin-trapping agent that inhibits NF-kappaB activity, on dextran sulfate sodium (DSS)-induced colonic mucosal injury and inflammation in mice. Acute colitis was induced with DSS in female BALB/c mice receiving 0, 0.3, 3, and 30 mg/kg i.p. PBN daily. Colonic mucosal inflammation was evaluated biochemically and histologically. Nitric oxide was evaluated as luminal nitrite/nitrite concentration by the Griess reaction and as immunoreactive nitrotyrosine in mucosal cells. Mucosal tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) were determined by immunoassay. Colonic mRNA expression for iNOS, TNF-alpha, and IFN-gamma was measured by reverse transcription-polymerase chain reaction, and NF-kappaB activation was evaluated by electrophoretic mobility shift assay. After DSS administration, mice showed increased luminal nitrite/nitrate, mucosal TNF-alpha and IFN-gamma, and mRNA for iNOS and these cytokines, in addition to decreased colonic length and increased inflammatory score, luminal hemoglobin, and colonic myeloperoxidase activity. PBN inhibited increases in luminal nitric oxide production, nitrotyrosine immunoreactivity, and mucosal TNF-alpha and IFN-gamma. Colonic iNOS, TNF-alpha, and IFN-gamma mRNA were suppressed by PBN, as was a DSS-induced increase in colonic NF-kappaB DNA-binding activity. NF-kappaB is essential to DSS-induced colitis, suggesting molecular approach targeting of NF-kappaB for treatment of inflammatory bowel disease. Topics: Animals; Body Weight; Colitis; Colon; Cyclic N-Oxides; Dextran Sulfate; Female; Immunohistochemistry; Inflammation; Interferon-gamma; Mice; Mice, Inbred BALB C; Neutrophils; NF-kappa B; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrogen Oxides; Protein Binding; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Spin Labels; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation | 2002 |
The central nervous system inflammatory response to neurotropic virus infection is peroxynitrite dependent.
We have recently demonstrated that increased blood-CNS barrier permeability and CNS inflammation in a conventional mouse model of experimental allergic encephalomyelitis are dependent upon the production of peroxynitrite (ONOO(-)), a product of the free radicals NO* and superoxide (O2*(-)). To determine whether this is a reflection of the physiological contribution of ONOO(-) to an immune response against a neurotropic pathogen, we have assessed the effects on adult rats acutely infected with Borna disease virus (BDV) of administration of uric acid (UA), an inhibitor of select chemical reactions associated with ONOO(-). The pathogenesis of acute Borna disease in immunocompetent adult rats results from the immune response to the neurotropic BDV, rather than the direct effects of BDV infection of neurons. An important stage in the BDV-specific neuroimmune response is the invasion of inflammatory cells into the CNS. UA treatment inhibited the onset of clinical disease, and prevented the elevated blood-brain barrier permeability as well as CNS inflammation seen in control-treated BDV-infected rats. The replication and spread of BDV in the CNS were unchanged by the administration of UA, and only minimal effects on the immune response to BDV Ags were observed. These results indicate that the CNS inflammatory response to neurotropic virus infection is likely to be dependent upon the activity of ONOO(-) or its products on the blood-brain barrier. Topics: Acute Disease; Animals; Antigens, Viral; Blood-Brain Barrier; Borna Disease; Borna disease virus; Brain; Brain Chemistry; Chemotaxis, Leukocyte; Encephalitis, Viral; Female; Free Radical Scavengers; Free Radicals; Gene Expression Profiling; Immunocompetence; Inflammation; Lymphocyte Count; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Oxidation-Reduction; Peroxynitrous Acid; Polymerase Chain Reaction; Rats; Rats, Inbred Lew; T-Lymphocyte Subsets; Tyrosine; Uric Acid; Virus Replication | 2001 |
Influenza A virus infection of mice induces nuclear accumulation of the tumorsuppressor protein p53 in the lung.
To investigate whether the tumor suppressor p53 protein, an indicator of DNA damage and cell stress, accumulates in the course of influenza-virus-induced murine pneumonia at the site of inflammation, female BALB/c mice were infected each with 5 x 10(4) infectious units of influenza virus A, strain Puerto Rico (PR) 8, by instillation into the nose and the pharynx. Two days later the mice became sick. Three and 6 days after infection the lungs of sacrificed infected and uninfected mice were examined. We assessed the presence and localisation of inflammation, the expression of influenza viral and p53 protein, as well as of the WAF1/Cip1/SDI gene product p21. Further, the appearance of nitrotyrosine, as an indicator of the formation of peroxynitrite, and eventually of apoptotic cells was examined. No significant nuclear p53 accumulation was found in influenza virus-infected murine cells in vitro. The results show, that in the course of influenza A virus-mediated murine pneumonia inflammatory bystander cells may cause activation of the tumor suppressor protein p53, due to oxidative stress and DNA damage, with ensuing p53-dependent upregulation of p21. Apoptosis is then mainly due to these indirect processes, with possible involvement of p53. Topics: Animals; Apoptosis; Cell Nucleus; Cells; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Female; In Situ Nick-End Labeling; Inflammation; Influenza A virus; Lung; Mice; Mice, Inbred BALB C; Orthomyxoviridae Infections; Tumor Suppressor Protein p53; Tyrosine | 2001 |
Inflammatory-type responses after exposure to ionizing radiation in vivo: a mechanism for radiation-induced bystander effects?
Haemopoietic tissues exposed to ionizing radiation are shown to exhibit increased macrophage activation, defined by ultrastructural characteristics and increased lysosomal and nitric oxide synthase enzyme activities. Macrophage activation post-irradiation was also associated with enhanced respiratory burst activities and an unexpected neutrophil infiltration. Examination of p53-null mice demonstrated that macrophage activation and neutrophil infiltration were not direct effects of irradiation, but were a consequence of the recognition and clearance of radiation-induced apoptotic cells. Increased phagocytic cell activity was maintained after apoptotic bodies had been removed. These findings demonstrate that, contrary to expectation, recognition and clearance of apoptotic cells after exposure to radiation produces both a persistent macrophage activation and an inflammatory-type response. We also demonstrate a complexity of macrophage activation following radiation that is genotype dependent, indicating that the in vivo macrophage responses to radiation damage are genetically modified processes. These short-term responses of macrophages to radiation-induced apoptosis and their genetic modification are likely to be important determinants of the longer-term consequences of radiation exposure. Furthermore, in addition to any effects attributable to immediate radiation-induced damage, our findings provide a mechanism for the production of damage via a 'bystander' effect which may contribute to radiation-induced genomic instability and leukaemogenesis. Topics: Animals; Apoptosis; beta-Galactosidase; Bone Marrow; Bystander Effect; Chemotaxis, Leukocyte; Dose-Response Relationship, Radiation; Enzyme Induction; Gamma Rays; Genes, p53; Genetic Predisposition to Disease; Genotype; Inflammation; Lysosomes; Macrophage Activation; Mice; Mice, Inbred C57BL; Mice, Inbred CBA; Mice, Inbred DBA; Mice, Knockout; Neutrophils; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Radiation Injuries, Experimental; Radiation Tolerance; Respiratory Burst; Species Specificity; Spleen; Tumor Suppressor Protein p53; Tyrosine; Whole-Body Irradiation | 2001 |
Formation of nitrotyrosine by methylene blue photosensitized oxidation of tyrosine in the presence of nitrite.
Methylene blue photosensitized oxidation of tyrosine in the presence of nitrite produces 3-nitrotyrosine, with maximum yield at pH 6. The formation of 3-nitrotyrosine requires oxygen and increases using deuterium oxide as solvent, suggesting the involvement of singlet oxygen in the reaction. The detection of dityrosine as an additional reaction product suggests that the first step in the interaction of tyrosine with singlet oxygen generates tyrosyl radicals which can dimerize to form dityrosine or react with a nitrite-derived species to produce 3-nitrotyrosine. Although the chemical identity of the nitrating species has not been established, the possible generation of nitrogen dioxide (*NO(2)) by indirect oxidation of nitrite by intermediately produced tyrosyl radical, via electron transfer, is proposed. One important implication of the results of this study is that the oxidation of tyrosine by singlet oxygen in the presence of nitrite may represent an alternative or additional pathway of 3-nitrotyrosine formation of potential importance in oxidative injures such as during inflammatory processes. Topics: Animals; Hydrogen-Ion Concentration; In Vitro Techniques; Inflammation; Methylene Blue; Nitrites; Oxidation-Reduction; Photochemistry; Singlet Oxygen; Tyrosine | 2001 |
Arginine reverses ethanol-induced inflammatory and fibrotic changes in liver despite continued ethanol administration.
We investigated the potential of arginine to reverse pathological changes in alcohol-induced liver injury. Four groups (six rats/group) of male Wistar rats were fed a fish oil-ethanol diet for 6 (group 2) or 8 (group 1) weeks. Rats in group 3 were fed fish oil-ethanol for 6 weeks, after which they were administered arginine with fish oil-ethanol for an additional 2 weeks. Rats in group 4 were fed fish oil-dextrose for 8 weeks. Liver samples were analyzed for histopathology, lipid peroxidation, cytochrome P4502E1 activity, nuclear factor-kappaB, and levels of messenger RNA for tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. Concentrations of endotoxin were measured in plasma. The most severe inflammation and fibrosis was detected in groups 1 and 2, as were the highest levels of endotoxin, lipid peroxidation, cytochrome P450 2E1 activity, activation of nuclear factor-kappaB, and mRNA levels for tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. Plasma nitric oxide was also increased as was nitrotyrosine in liver. After arginine was administered, there was marked improvement in the pathological changes accompanied by decreased levels of endotoxin, lipid peroxidation, activation of nuclear factor-kappaB, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide, and nitrotyrosine staining. The therapeutic effects of arginine are probably secondary to increased levels of nitric oxide but other effects of arginine cannot be excluded. Topics: Animals; Arginine; Cyclooxygenase 2; Disease Models, Animal; Down-Regulation; Drug Interactions; Endotoxins; Ethanol; Humans; Inflammation; Isoenzymes; Lipid Peroxidation; Liver; Liver Cirrhosis; Liver Cirrhosis, Alcoholic; Male; Membrane Proteins; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prostaglandin-Endoperoxide Synthases; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha; Tyrosine | 2001 |
Biochemical model reactions indicative of inflammatory processes. Activities of extracts from Fraxinus excelsior and Populus tremula.
All processes of oxygen activation include very reactive intermediates. Therefore, aerobic cells must cope with--and to some extent also adapt to--oxidative stress provoked for example by infections or intoxications, where these reactive intermediates accumulate. All inflammatory processes include such oxygen activating processes where reactive oxygen species (ROS) are produced. Dependent on the strength of these impact(s), several symptoms indicate the deviation from normal, steady-state metabolism. Intrinsic radical scavenging processes or compounds administered with food thus have to warrant metabolic control within certain limits. Antioxidants which in many cases are free radical scavengers or quenchers of activated states comprise a vast number of classes of organic molecules including phenolics as the most prominent ones. In this publication the activities of extracts from Fraxinus excelsior, Populus tremula and Solidago virgaurea as components of the drug Phytodolor and their mechanisms of protection from oxidative damage are summarized. In addition, new results on tyrosine nitration, a process characteristic for sites of inflammation, and its inhibition by these plant extracts, is reported. Topics: Animals; Antioxidants; Cells, Cultured; Chromatography, High Pressure Liquid; Enzymes; Free Radical Scavengers; Humans; Indicators and Reagents; Inflammation; Inflammatory Bowel Diseases; Lipoproteins, LDL; Lipoxygenase; Models, Biological; Nervous System Diseases; Oxidative Stress; Peroxidase; Plant Extracts; Plants, Medicinal; Respiratory Burst; Respiratory Tract Diseases; Tyrosine; Xanthine Oxidase | 2000 |
Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum.
Nitric oxide (NO) is increased in the exhaled air of some patients with inflammatory lung disorders, but not in others. NO may combine with superoxide to form peroxynitrite, which lowers NO gas concentrations, increases formation of nitrate, and increases nitration of tyrosine residues on proteins. We hypothesized that superoxide released from neutrophils in the lower respiratory tract of cystic fibrosis (CF) results in increased nitrate and nitrotyrosine levels in sputum. In order to test this hypothesis, exhaled NO was collected from 5 stable adult CF subjects and from 5 nonsmoking normal controls. Consistent with previous reports, exhaled NO concentrations were not increased in CF exhaled air (22.6 +/- 1.5 ppb vs. 28.6 +/- 1.5 ppb in normals, P > 0.05). Sputum was collected from 9 adult CF subjects and the same 5 normal controls and evaluated for nitrite, nitrate, and nitrotyrosine. Nitrate and nitrotyrosine levels, but not nitrite, were significantly elevated in CF. Recently, myeloperoxidase has also been implicated as a mechanism of nitrotyrosine formation. Therefore, myeloperoxidase was measured and found to be elevated in the CF sputum (64.2 +/- 35.9 vs. 0.73 +/- 0.16 U/mL, P < 0.001), and was found to correlate with concentrations of nitrotyrosine (r = 0.87, P < 0.05). However, in vitro studies with myeloperoxidase and murine lung epithelial cells did not demonstrate a reduction of NO gas with nitrotyrosine or an increase in nitrate formation. These data demonstrate that nitrate and nitrotyrosine are elevated in the sputa of CF subjects and suggest increased production of NO in the lower respiratory tract of CF patients, despite the relatively low exhaled NO levels. Pediatr Pulmonol. 2000; 30:79-85. Published 2000 Wiley-Liss, Inc. Topics: Adolescent; Adult; Cystic Fibrosis; Female; Free Radicals; Humans; Inflammation; Male; Nitrates; Nitric Oxide; Sputum; Superoxides; Tyrosine | 2000 |
P-selectin participates in cardiopulmonary bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production.
P-selectin participates in the development of inflammatory disorders. Cardiopulmonary bypass is thought to induce inflammatory response and increase nitric oxide production. To evaluate the role of P-selectin in bypass-induced inflammatory response and its association with nitric oxide production, we examined the effect of P-selectin monoclonal antibody in a rat model of cardiopulmonary bypass.. Twenty adult Sprague-Dawley rats undergoing cardiopulmonary bypass for 60 minutes were divided into 2 groups. A 3-mg/kg dose of anti-rat specific P-selectin monoclonal antibody (ARP2-4; Sumitomo Pharmaceuticals, Osaka, Japan) was administered into the priming solution before bypass in group P (n = 10) and a 3-mg/kg dose of PNB1.6 (nonblocking monoclonal antibody) was added in group C for control (n = 10).. At the termination of bypass and 3 hours after the termination of bypass, plasma levels of interleukins 6 and 8, nitrate/nitrite, the percentage ratio of nitrotyrosine to tyrosine (an indicator of peroxynitrite formation), and the respiratory index were significantly higher than before bypass in both groups, and they were significantly lower in group P than in group C. Plasma P-selectin level in group C and exhaled nitric oxide concentration in both groups at termination of bypass were significantly lower than those before bypass, and they were significantly higher 3 hours after termination of bypass than before bypass in both groups. Plasma P-selectin level and exhaled nitric oxide concentration in group P were significantly higher than those in group C at the end of bypass, but they were significantly lower 3 hours after the termination of bypass.. These results demonstrate that P-selectin may participate in the augmentation of bypass-induced inflammatory response in association with nitric oxide and peroxynitrite production. Topics: Animals; Antibodies, Monoclonal; Cardiopulmonary Bypass; Inflammation; Interleukin-6; Male; Nitrates; Nitric Oxide; Nitrites; P-Selectin; Rats; Rats, Sprague-Dawley; Tyrosine | 2000 |
Oral spermine administration inhibits nitric oxide-mediated intestinal damage and levels of systemic inflammatory mediators in a mouse endotoxin model.
Enhanced intestinal nitric oxide production observed during sepsis is thought to play a central role in lipopolysaccharide-induced intestinal damage. In contrast intestinal polyamines, both from endogenous and exogenous origin, are essential for the maintenance of mucosal integrity. Polyamines have been shown to inhibit lipopolysaccharide-induced nitric oxide release in vitro and have been claimed to exert additional antiinflammatory actions. In this study, the effect of the polyamine spermine on the release of the proinflammatory mediators nitric oxide and tumor necrosis factor-alpha by a murine macrophage cell line was investigated. Furthermore, we investigated whether oral spermine administration inhibits lipopolysaccharide-induced intestinal inducible nitric oxide synthase and nitrotyrosine expression and modulates the release of inflammatory mediators. Our results show that although spermine inhibited lipopolysaccharide-induced nitric oxide release in a murine macrophage cell line, no effect on tumor necrosis factor-alpha release was observed. In addition, oral spermine administration inhibited intestinal inducible nitric oxide synthase and nitrotyrosine expression suggesting a protective effect of spermine on lipopolysaccharide-induced intestinal damage. In parallel a decrease in serum levels of the proinflammatory mediators nitrate, nitrite, and interferon-gamma and an increase in the antiinflammatory cytokine interleukin-10 was observed, although tumor necrosis factor-alpha levels were unaffected. These results indicate that spermine inhibits lipopolysaccharide-induced nitric oxide release in vitro as well as in vivo. Further, intraluminally derived polyamines modulate the systemic immune response. It is concluded that oral spermine administration might have therapeutic perspectives for several disorders characterized by systemic inflammation and intestinal damage. Topics: Administration, Oral; Animals; Disease Models, Animal; Escherichia coli; Female; Immunohistochemistry; Inflammation; Interferon-gamma; Interleukin-10; Intestinal Mucosa; Intestines; Lipopolysaccharides; Macrophages; Mice; Neutrophils; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Shock, Septic; Spermine; Tumor Necrosis Factor-alpha; Tyrosine | 1999 |
Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia.
Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO.) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO. would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO. and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration. Topics: Animals; Azides; Cell Survival; Cells, Cultured; Enzyme Activation; Glutamate Dehydrogenase; Inflammation; Ketoglutarate Dehydrogenase Complex; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Microglia; Mitochondria; Nitrates; Nitric Oxide; Oxidative Stress; Oxidoreductases; Oxygen Consumption; Reactive Oxygen Species; Tyrosine | 1999 |
Eosinophil peroxidase nitrates protein tyrosyl residues. Implications for oxidative damage by nitrating intermediates in eosinophilic inflammatory disorders.
Eosinophil peroxidase (EPO) has been implicated in promoting oxidative tissue injury in conditions ranging from asthma and other allergic inflammatory disorders to cancer and parasitic/helminthic infections. Studies thus far on this unique peroxidase have primarily focused on its unusual substrate preference for bromide (Br(-)) and the pseudohalide thiocyanate (SCN(-)) forming potent hypohalous acids as cytotoxic oxidants. However, the ability of EPO to generate reactive nitrogen species has not yet been reported. We now demonstrate that EPO readily uses nitrite (NO(2)(-)), a major end-product of nitric oxide ((.)NO) metabolism, as substrate to generate a reactive intermediate that nitrates protein tyrosyl residues in high yield. EPO-catalyzed nitration of tyrosine occurred more readily than bromination at neutral pH, plasma levels of halides, and pathophysiologically relevant concentrations of NO(2)(-). Furthermore, EPO was significantly more effective than MPO at promoting tyrosine nitration in the presence of plasma levels of halides. Whereas recent studies suggest that MPO can also promote protein nitration through indirect oxidation of NO(2)(-) with HOCl, we found no evidence that EPO can indirectly mediate protein nitration by a similar reaction between HOBr and NO(2)(-). EPO-dependent nitration of tyrosine was modulated over a physiologically relevant range of SCN(-) concentrations and was accompanied by formation of tyrosyl radical addition products (e.g. o,o'-dityrosine, pulcherosine, trityrosine). The potential role of specific antioxidants and nucleophilic scavengers on yields of tyrosine nitration and bromination by EPO are examined. Thus, EPO may contribute to nitrotyrosine formation in inflammatory conditions characterized by recruitment and activation of eosinophils. Topics: Animals; Eosinophil Peroxidase; Eosinophils; Inflammation; Kinetics; Nitric Oxide; Nitrites; Oxidative Stress; Peroxidases; Tyrosine | 1999 |
Protective effects of poly (ADP-ribose) synthase inhibitors in zymosan-activated plasma induced paw edema.
The aim of the present study was to investigate the role of poly (ADP-ribose) synthetase (PARS) in a model of acute local inflammation (zymosan-activated plasma (ZAP)-induced paw edema), in which the oxyradicals, nitric oxide and peroxynitrite, are known to play a crucial role. Injection of zymosan-activated plasma (ZAP) into the rat paw induced edema formation. The maximal increase in paw volume was observed at three hours after administration (maximal in paw volume: 1.29+/-0.09 ml). At this time point, there was a marked increase in neutrophil infiltration in the paw, as measured by an increase in myeloperoxidase (MPO) activity in the paw tissue (260+/-25 mU/100 mg wet tissue). However, ZAP-induced paw edema was significantly reduced in a dose-dependent manner by treatment with 3-aminobenzamide (3-AB) or nicotinamide (NIC), two inhibitors of PARS, at 1, 2, 3, 4 hours after ZAP injection. PARS inhibition also caused a significant reduction of MPO activity. The paw tissues were also examined immunohistochemically for the presence of nitrotyrosine (a footprint for peroxynitrite formation). At 3 h following ZAP injection, staining for nitrotyrosine were also found to be localised within discrete cells in the inflamed paw tissue. Treatment with PARS inhibitor prevented the appearance of nitrotyrosine in the tissues. Our results suggest that in paw edema induced by ZAP, inhibition of PARS exert potent anti-inflammatory effects. Topics: Animals; Benzamides; Complement Activation; Dose-Response Relationship, Drug; Edema; Enzyme Inhibitors; Free Radicals; Immunohistochemistry; Inflammation; Male; Niacinamide; Nitrates; Peroxidase; Poly(ADP-ribose) Polymerase Inhibitors; Poly(ADP-ribose) Polymerases; Rats; Rats, Wistar; Tyrosine; Zymosan | 1999 |
Role of peroxynitrite as a mediator of pathophysiological alterations in experimental pneumococcal meningitis.
This study investigated the role of peroxynitrite in an adult rat model of pneumococcal meningitis. Immunohistochemically, nitrotyrosine residues, as a marker for peroxynitrite formation, were detected perivascularly and in proximity to inflammatory cells in the subarachnoid space. Nitrotyrosine immunoreactivity was colocalized with blood-brain barrier breaching, which was visualized by fluorescence microscopy after intravenous application of Evans blue. Treatment of infected rats with uric acid (300 mg/kg intraperitoneally), a scavenger of peroxynitrite, significantly attenuated intracranial pressure, cerebrospinal fluid white blood cell count, and blood-brain barrier leakage, as indicated by Evans blue concentration in the cerebrospinal fluid (21.6+/-9.3 mm Hg, 5776+/-1790 cells/microL, 9.7+/-6.4 microgram/mL in infected, untreated rats vs. 7.2+/-1.6 mm Hg, 2004+/-904 cells/microL, 1.1+/-1.0 microgram/mL infected, uric acid-treated rats, mean+/-SD, P<.05). These data suggest that peroxynitrite plays a central role in mediating pathophysiological alterations during bacterial meningitis. Topics: Animals; Blood-Brain Barrier; Brain; Cerebrospinal Fluid; Free Radical Scavengers; Inflammation; Intracranial Pressure; Leukocytes; Male; Meningitis, Pneumococcal; Nitrates; Oxidants; Rats; Rats, Wistar; Subarachnoid Space; Tyrosine; Uric Acid | 1999 |
Peroxynitrite formation within the central nervous system in active multiple sclerosis.
Peroxynitrite, generated by the reaction of nitric oxide (NO) with superoxide at sites of inflammation, is a strong oxidant capable of damaging tissues and cells. Detection of nitrotyrosine (NT) at inflammatory sites serves as a biochemical marker for peroxynitrite-mediated damage. In this study, NT was detected immunohistochemically within autopsied CNS tissues from six of nine multiple sclerosis (MS) patients, and in most of the MS sections displaying inflammation. Nitrite and nitrate, the stable oxidation products of NO and peroxynitrite, respectively, were measured in cerebrospinal fluid samples obtained from MS patients and controls. Levels of nitrate were elevated significantly during clinical relapses of MS. These data suggest that peroxynitrite formation is a major consequence of NO produced in MS-affected CNS and implicate a role for this powerful oxidant in the pathogenesis of MS. Topics: Central Nervous System; Humans; Immunohistochemistry; Inflammation; Multiple Sclerosis; Nervous System Diseases; Nitrates; Nitrites; Recurrence; Tyrosine | 1998 |
Inflammation and NO(X)-induced nitration: assay for 3-nitrotyrosine by HPLC with electrochemical detection.
The identification of 15N-labeled 3-nitrotyrosine (NTyr) by gas chromatography/mass spectroscopy in protein hydrolyzates from activated RAW 264.7 macrophages incubated with 15N-L-arginine confirms that nitric oxide synthase (NOS) is involved in the nitration of protein-bound tyrosine (Tyr). An assay is presented for NTyr that employs HPLC with tandem electrochemical and UV detection. The assay involves enzymatic hydrolysis of protein, acetylation, solvent extraction, O-deacetylation, and dithionite reduction to produce an analyte containing N-acetyl-3-aminotyrosine, an electrochemically active derivative of NTyr. We estimate the level of protein-bound NTyr in normal rat plasma to be approximately 0-1 residues per 10(6) Tyr with a detection limit of 0.5 per 10(7) Tyr when > 100 nmol of Tyr is analyzed and when precautions are taken to limit nitration artifacts. Zymosan-treated RAW 264.7 cells were shown to have an approximately 6-fold higher level of protein-bound NTyr compared with control cells and cells treated with N(G)-monomethyl-L-arginine, an inhibitor of NOS. Intraperitoneal injection of F344 rats with zymosan led to a marked elevation in protein-bound NTyr to approximately 13 residues per 10(6) Tyr, an approximately 40-fold elevation compared with plasma protein of untreated rats; cotreatment with N(G)-monomethyl-L-arginine inhibited the formation of NTyr in plasma protein from blood and peritoneal exudate by 69% and 53%, respectively. This assay offers a highly sensitive and quantitative approach for investigating the role of reactive byproducts of nitric oxide in the many pathological conditions and disease states associated with NO(X) exposure such as inflammation and smoking. Topics: Animals; Blood Proteins; Cell Line; Chromatography, High Pressure Liquid; Electrochemistry; Gas Chromatography-Mass Spectrometry; Inflammation; Macrophage Activation; Male; Nitrates; Nitric Oxide; Rats; Rats, Inbred F344; Tyrosine; Zymosan | 1997 |
Protective effect of melatonin in carrageenan-induced models of local inflammation: relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity.
In vitro studies have demonstrated that melatonin is a scavenger of oxyradicals and peroxynitrite and an inhibitor of nitric oxide (NO) production. In the present study, we evaluated the effect of melatonin treatment in two models of acute inflammation (carrageenan-induced paw edema and pleurisy), where oxyradicals, NO, and peroxynitrite play a crucial role in the inflammatory process. Our data show that melatonin (given at 62.5 and 125 microg/paw in the paw edema model or 25 and 50 mg/kg in the pleurisy model) inhibits the inflammatory response (paw swelling, pleural exudate formation, mononuclear cell infiltration, and histological injury) in dose-dependent manner in both models. Furthermore, our data suggest that melatonin exerts an inhibitory effect on the expression of the inducible isoform of NO synthase. Melatonin also prevented the formation of nitrotyrosine, an indicator of peroxynitrite, in both models of inflammation. Taken together, the present results demonstrate that melatonin exerts potent antiinflammatory effects. Part of these antiinflammatory effects may be related to an inhibition of the expression of the inducible NO synthase, while another part may be related to oxyradical and peroxynitrite scavenging. Topics: Animals; Antioxidants; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Free Radical Scavengers; Immunoenzyme Techniques; Inflammation; Male; Melatonin; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Peroxidase; Pleurisy; Rats; Rats, Sprague-Dawley; Tyrosine | 1997 |
Nitration of tyrosine by hydrogen peroxide and nitrite.
Peroxynitrite anion is a powerful oxidant which can initiate nitration and hydroxylation of aromatic rings. Peroxynitrite can be formed in several ways, e.g. from the reaction of nitric oxide with superoxide or from hydrogen peroxide and nitrite at acidic pH. We investigated pH dependent nitration and hydroxylation resulting from the reaction of hydrogen peroxide and nitrite to determine if this reaction proceeds at pH values which are known to occur in vivo. Nitration and hydroxylation products of tyrosine and salicyclic acid were separated with an HPLC column and measured using ultraviolet and electrochemical detectors. These studies revealed that this reaction favored hydroxylation between pH 2 and pH 4, while nitration was predominant between pH 5 and pH 6. Peroxynitrite is presumed to be an intermediate in this reaction as the hydroxylation and nitration profiles of authentic peroxynitrite showed similar pH dependence. These findings indicate that hydrogen peroxide and nitrite interact at hydrogen ion concentrations present under some physiologic conditions. This interaction can initiate nitration and hydroxylation of aromatic molecules such as tyrosine residues and may thereby contribute to the biochemical and toxic effects of the molecules. Topics: Hydrogen Peroxide; Hydrogen-Ion Concentration; Hydroxylation; Inflammation; Iron; Nitrates; Oxidative Stress; Salicylates; Salicylic Acid; Sodium Nitrite; Tyrosine | 1995 |