3-nitrotyrosine and Hypothyroidism

3-nitrotyrosine has been researched along with Hypothyroidism* in 3 studies

Other Studies

3 other study(ies) available for 3-nitrotyrosine and Hypothyroidism

ArticleYear
Investigation of zinc and copper levels in methimazole-induced hypothyroidism: relation with the oxidant-antioxidant status.
    Folia biologica, 2007, Volume: 53, Issue:5

    Thyroid hormones are associated with the oxidative and antioxidative status of the organism. Depression of metabolism by hypothyroidism has been reported to decrease oxidant production and thus protect tissues against oxidant damage. The purpose of the present study was to investigate Zn and Cu levels in MMI-induced hypothyroidism and to show whether there is a connection between these trace elements and the oxidant-antioxidant status in experimental hypothyroidism. 3-Nitrotyrosine was measured as a marker of nitro-oxidative stress. In order to examine the antioxidant status of MMI-induced hypothyroidism in rats, GSH and SOD levels were determined as well. Significantly decreased 3-nitrotyrosine, Cu and Zn levels were observed in our experimental model when compared with the controls. On the other hand, GSH and SOD levels remained constant. It may be suggested that Cu and Zn serve as antioxidant molecules and exert their effects in an indirect manner to reduce oxidative stress in experimental hypothyroidism.

    Topics: Animals; Antioxidants; Copper; Female; Glutathione; Hypothyroidism; Methimazole; Oxidants; Oxidative Stress; Rats; Rats, Wistar; Superoxide Dismutase; Tyrosine; Zinc

2007
Hypothyroidism attenuates protein tyrosine nitration, oxidative stress and renal damage induced by ischemia and reperfusion: effect unrelated to antioxidant enzymes activities.
    BMC nephrology, 2005, Nov-07, Volume: 6

    It has been established that hypothyroidism protects rats against renal ischemia and reperfusion (IR) oxidative damage. However, it is not clear if hypothyroidism is able to prevent protein tyrosine nitration, an index of nitrosative stress, induced by IR or if antioxidant enzymes have involved in this protective effect. In this work it was explored if hypothyroidism is able to prevent the increase in nitrosative and oxidative stress induced by IR. In addition the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was studied. Control and thyroidectomized (HTX) rats were studied 24 h of reperfusion after 60 min ischemia.. Male Wistar rats weighing 380 +/- 22 g were subjected to surgical thyroidectomy. Rats were studied 15 days after surgery. Euthyroid sham-operated rats were used as controls (CT). Both groups of rats underwent a right kidney nephrectomy and suffered a 60 min left renal ischemia with 24 h of reperfusion. Rats were divided in four groups: CT, HTX, IR and HTX+IR. Rats were sacrificed and samples of plasma and kidney were obtained. Blood urea nitrogen (BUN) and creatinine were measured in blood plasma. Kidney damage was evaluated by histological analysis. Oxidative stress was measured by immunohistochemical localization of protein carbonyls and 4-hydroxy-2-nonenal modified proteins. The protein carbonyl content was measured using antibodies against dinitrophenol (DNP)-modified proteins. Nitrosative stress was measured by immunohistochemical analysis of 3-nitrotyrosine modified proteins. The activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was measured by spectrophotometric methods. Multiple comparisons were performed with ANOVA followed by Bonferroni t test.. The histological damage and the rise in plasma creatinine and BUN induced by IR were significantly lower in HTX+IR group. The increase in protein carbonyls and in 3-nitrotyrosine and 4-hydroxy-2-nonenal modified proteins was prevented in HTX+IR group. IR-induced decrease in renal antioxidant enzymes was essentially not prevented by HTX in HTX+IR group.. Hypothyroidism was able to prevent not only oxidative but also nitrosative stress induced by IR. In addition, the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase seem not to play a protective role in this experimental model.

    Topics: Animals; Catalase; Glutathione Peroxidase; Hypothyroidism; Immunohistochemistry; Kidney; Male; Oxidative Stress; Oxidoreductases; Rats; Rats, Wistar; Reperfusion Injury; Superoxide Dismutase; Tyrosine

2005
Effects of 3-nitro-L-tyrosine on thyroid function in the rat: an experimental model for the dehalogenase defect.
    The Journal of clinical investigation, 1971, Volume: 50, Issue:12

    The effects on thyroid function of an inhibitor of tyrosine dehalogenase, 3-nitro-L-tyrosine (MNT) have been investigated in rats. In preliminary studies, marked inhibition of iodotyrosine deiodination was demonstrated in rats drinking 8 mM MNT. A series of experiments was then performed in which rats received Remington low iodine diet and 8 mM MNT as drinking fluid. This regimen had the following effects, compared to the effects of a low iodine diet alone: (a) a decrease in serum protein-bound iodine, elevation of serum thyrotropin level, goiter, and growth inhibition all prevented or reversed by iodine supplements: (b) on initiation of MNT, a 2- to 3-fold increase in the rate of release of radioiodine from the thyroid and concomitant urinary excretion of large amounts of organic iodine: and (c) after 2 wk of MNT, a greatly increased rate of thyroidal uptake and release of (131)I, an increase in the ratio of monoiodotyrosine-(131)I to diiodotyrosine-(131)I in thyroid proteolysates and the appearance of labeled iodotyrosines in serum. Acute administration of MNT intraperitoneally to rats on either an iodine-deficient or iodine-sufficient diet did not inhibit thyroidal uptake of (131)I or alter the distribution of (131)I among thyroidal iodoamino acids. It is concluded that MNT is an effective inhibitor of iodotyrosine deiodination in vivo, without other important actions on thyroid function. Thus, MNT treatment affords a model for the human dehalogenase defect. By provoking iodotyrosine secretion and consequent urinary loss of iodine, MNT can exaggerate the effects of a low iodine intake, producing goitrous hypothyroidism despite a rapid rate of iodine turnover in the thyroid.

    Topics: Administration, Oral; Animals; Blood Proteins; Chromatography, Paper; Diet; Diiodotyrosine; Disease Models, Animal; Hydrolases; Hypothyroidism; Injections, Intraperitoneal; Iodides; Iodine; Iodine Isotopes; Male; Monoiodotyrosine; Nitro Compounds; Organ Size; Protein Binding; Radioimmunoassay; Rats; Rats, Inbred Strains; Thyroid Function Tests; Thyroid Gland; Thyrotropin; Tyrosine

1971