3-nitrotyrosine and Hypertrophy--Right-Ventricular

3-nitrotyrosine has been researched along with Hypertrophy--Right-Ventricular* in 6 studies

Other Studies

6 other study(ies) available for 3-nitrotyrosine and Hypertrophy--Right-Ventricular

ArticleYear
Oxidative stress augments pulmonary hypertension in chronically hypoxic mice overexpressing the oxidized LDL receptor.
    American journal of physiology. Heart and circulatory physiology, 2013, Jul-15, Volume: 305, Issue:2

    Chronic hypoxia is one of the main causes of pulmonary hypertension (PH) associated with ROS production. Lectin-like oxidized low-density lipoprotein receptor (LOX)-1 is known to be an endothelial receptor of oxidized low-density lipoprotein, which is assumed to play a role in the initiation of ROS generation. We investigated the role of LOX-1 and ROS generation in PH and vascular remodeling in LOX-1 transgenic (TG) mice. We maintained 8- to 10-wk-old male LOX-1 TG mice and wild-type (WT) mice in normoxia (room air) or hypoxia (10% O2 chambers) for 3 wk. Right ventricular (RV) systolic pressure (RVSP) was comparable between the two groups under normoxic conditions; however, chronic hypoxia significantly increased RVSP and RV hypertrophy in LOX-1 TG mice compared with WT mice. Medial wall thickness of the pulmonary arteries was significantly greater in LOX-1 TG mice than in WT mice. Furthermore, hypoxia enhanced ROS production and nitrotyrosine expression in LOX-1 TG mice, supporting the observed pathological changes. Administration of the NADPH oxidase inhibitor apocynin caused a significant reduction in PH and vascular remodeling in LOX-1 TG mice. Our results suggest that LOX-1-ROS generation induces the development and progression of PH.

    Topics: Animals; Antioxidants; Chronic Disease; Disease Models, Animal; Disease Progression; Enzyme Inhibitors; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Lipoproteins, LDL; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; NADPH Oxidases; Oxidative Stress; Pulmonary Artery; Reactive Oxygen Species; Scavenger Receptors, Class E; Signal Transduction; Tyrosine; Up-Regulation; Ventricular Function, Right; Ventricular Pressure

2013
Intermittent hypoxia augments pulmonary vascular smooth muscle reactivity to NO: regulation by reactive oxygen species.
    Journal of applied physiology (Bethesda, Md. : 1985), 2011, Volume: 111, Issue:4

    Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension. IH causes oxidative stress that may limit bioavailability of the endothelium-derived vasodilator nitric oxide (NO) and thus contribute to this hypertensive response. We therefore hypothesized that increased vascular superoxide anion (O(2)(-)) generation reduces NO-dependent pulmonary vasodilation following IH. To test this hypothesis, we examined effects of the O(2)(-) scavenger tiron on vasodilatory responses to the endothelium-dependent vasodilator ionomycin and the NO donor S-nitroso-N-acetylpenicillamine in isolated lungs from hypocapnic-IH (H-IH; 3 min cycles of 5% O(2)/air flush, 7 h/day, 4 wk), eucapnic-IH (E-IH; cycles of 5% O(2), 5% CO(2)/air flush), and sham-treated (air/air cycled) rats. Next, we assessed effects of endogenous O(2)(-) on NO- and cGMP-dependent vasoreactivity and measured O(2)(-) levels using the fluorescent indicator dihydroethidium (DHE) in isolated, endothelium-disrupted small pulmonary arteries from each group. Both E-IH and H-IH augmented NO-dependent vasodilation; however, enhanced vascular smooth muscle (VSM) reactivity to NO following H-IH was masked by an effect of endogenous O(2)(-). Furthermore, H-IH and E-IH similarly increased VSM sensitivity to cGMP, but this response was independent of either O(2)(-) generation or altered arterial protein kinase G expression. Finally, both H-IH and E-IH increased arterial O(2)(-) levels, although this response was more pronounced following H-IH, and H-IH exposure resulted in greater protein tyrosine nitration indicative of increased NO scavenging by O(2)(-). We conclude that IH increases pulmonary VSM sensitivity to NO and cGMP. Furthermore, endogenous O(2)(-) limits NO-dependent vasodilation following H-IH through an apparent reduction in bioavailable NO.

    Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Animals; Cyclic GMP; Cyclic GMP-Dependent Protein Kinases; Endothelium-Dependent Relaxing Factors; Free Radical Scavengers; Hypertrophy, Right Ventricular; Hypocapnia; Hypoxia; Ionomycin; Lung; Male; Muscle, Smooth, Vascular; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase Type III; Polycythemia; Pulmonary Artery; Rats; Rats, Wistar; Reactive Oxygen Species; S-Nitroso-N-Acetylpenicillamine; Superoxides; Tyrosine; Vasodilation

2011
Peroxynitrite mediates right-ventricular dysfunction in nitric oxide-exposed juvenile rats.
    Free radical biology & medicine, 2010, Nov-15, Volume: 49, Issue:9

    Chronic pulmonary hypertension in infancy and childhood frequently culminates in right-ventricular (RV) failure and early death. Current management may include prolonged treatment with inhaled nitric oxide (iNO). Our objective was to examine the effects of iNO on established chronic hypoxic pulmonary hypertension in juvenile rats, a model of chronic neonatal pulmonary hypertension characterized by increased pulmonary vascular resistance, vascular remodeling (RV hypertrophy and arterial medial wall thickening), and significant RV dysfunction. Pups were exposed to air or hypoxia (13% O(2)) from postnatal day 1 to 21 while receiving iNO (20 ppm) from day 14 to 21. In hypoxia-exposed animals, treatment with iNO decreased pulmonary vascular resistance, but did not augment RV output or reverse vascular remodeling. In addition, RV output was significantly reduced in air-exposed iNO-treated pups. Nitrotyrosine (a marker of peroxynitrite-mediated reactions), apoptosis, and expression of nitric oxide synthases 1 and 2 were increased in RV (but not left-ventricular) tissue from both air- and hypoxia-exposed pups treated with iNO. Concurrent treatment with a peroxynitrite decomposition catalyst (FeTPPS, 30 mg/kg/day, ip) prevented apoptosis and completely normalized RV output in iNO-exposed animals. Our results provide the first evidence that iNO may adversely impact the right ventricle through increased local generation of peroxynitrite.

    Topics: Administration, Inhalation; Animals; Animals, Newborn; Apoptosis; Disease Models, Animal; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Metalloporphyrins; Nitric Oxide; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Rats; Tyrosine; Vascular Resistance; Ventricular Dysfunction, Right

2010
Hypercapnia attenuates hypoxic pulmonary hypertension by inhibiting lung radical injury.
    Physiological research, 2009, Volume: 58 Suppl 2

    Chronic lung hypoxia results in hypoxic pulmonary hypertension. Concomitant chronic hypercapnia partly inhibits the effect of hypoxia on pulmonary vasculature. Adult male rats exposed to 3 weeks hypoxia (Fi(02)=0.1) combined with hypercapnia (Fi(C02)=0.04-0.05) had lower pulmonary arterial blood pressure, increased weight of the right heart ventricle, and less pronounced structural remodeling of the peripheral pulmonary arteries compared with rats exposed only to chronic hypoxia (Fi(02)=0.1). According to our hypothesis, hypoxic pulmonary hypertension is triggered by hypoxic injury to the walls of the peripheral pulmonary arteries. Hypercapnia inhibits release of both oxygen radicals and nitric oxide at the beginning of exposure to the hypoxic environment. The plasma concentration of nitrotyrosine, the marker of peroxynitrite activity, is lower in hypoxic rats exposed to hypercapnia than in those exposed to hypoxia alone. Hypercapnia blunts hypoxia-induced collagenolysis in the walls of prealveolar pulmonary arteries. We conclude that hypercapnia inhibits the development of hypoxic pulmonary hypertension by the inhibition of radical injury to the walls of peripheral pulmonary arteries.

    Topics: Animals; Blood Pressure; Chronic Disease; Disease Models, Animal; Hypercapnia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Lung Injury; Male; Oxidative Stress; Pulmonary Artery; Rats; Rats, Wistar; Time Factors; Tyrosine

2009
Gadolinium chloride inhibits pulmonary macrophage influx and prevents O(2)-induced pulmonary hypertension in the neonatal rat.
    Pediatric research, 2001, Volume: 50, Issue:2

    Newborn rats exposed to 60% O(2) for 14 d demonstrated a bronchopulmonary dysplasia-like lung morphology and pulmonary hypertension. A 21-aminosteroid antioxidant, U74389G, attenuated both pulmonary hypertension and macrophage accumulation in the O(2)-exposed lungs. To determine whether macrophage accumulation played an essential role in the development of pulmonary hypertension in this model, pups were treated with gadolinium chloride (GdCl(3)) to reduce lung macrophage content. Treatment of 60% O(2)-exposed animals with GdCl(3) prevented right ventricular hypertrophy (p < 0.05) and smooth muscle hyperplasia around pulmonary vessels, but had no effect on morphologic changes in the lung parenchyma. In addition, GdCl(3) inhibited 60% O(2)-mediated increases in endothelin-1, 8-isoprostane, and nitrotyrosine residues. Organotypic cultures of fetal rat distal lung cells were subjected to cyclical mechanical strain to assess the potential role of GdCl(3)-induced blockade of stretch-mediated cation channels in these effects. Mechanical strain caused a moderate increase of endothelin-1 (p < 0.05), which was unaffected by GdCl(3), but had no effect on 8-isoprostane or nitric oxide synthesis. A critical role for endothelin-1 in O(2)-mediated pulmonary hypertension was confirmed using the combined endothelin receptor antagonist SB217242. We concluded that pulmonary macrophage accumulation, in response to 60% O(2), mediated pulmonary hypertension through up-regulation of endothelin-1.

    Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cell Movement; Cells, Cultured; Dinoprost; Endothelin-1; F2-Isoprostanes; Gadolinium; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Infant, Newborn; Macrophages, Alveolar; Oxygen; Rats; Rats, Sprague-Dawley; Tyrosine

2001
Accumulation of nitrotyrosine correlates with endothelial NO synthase in pulmonary resistance arteries during chronic hypoxia in the rat.
    Pulmonary pharmacology & therapeutics, 2000, Volume: 13, Issue:4

    Nitrotyrosine and eNOS were detected immunocytochemically using specific antibodies in paraffin sections of lung from rats subjected to hypoxia for 2, 7, or 14 days. The staining intensity for eNOS was enhanced in the endothelium of both resistance and conduit pulmonary arteries at 2 days. Staining intensity for eNOS remained elevated at 7 and 14 days in conduit arteries, whereas it progressively increased further in resistance arteries. Nitrotyrosine staining was elevated to a similar degree in endothelium and adjacent vascular smooth muscle. In resistance pulmonary arteries, there was a progressive increase in nitrotyrosine, which matched the increase in eNOS. In conduit pulmonary arteries, nitrotyrosine increased only after 14 days of hypoxia. The results suggest that in chronic hypoxia the up-regulation of eNOS leads to the formation of peroxynitrite which has access to both endothelium and vascular smooth muscle.

    Topics: Actins; Animals; Arteries; Endothelium; Hypertrophy, Right Ventricular; Hypoxia; Immunohistochemistry; Lung; Nitric Oxide Synthase; Rats; Tyrosine; Vascular Resistance

2000