3-nitrotyrosine and Hypertension--Renovascular

3-nitrotyrosine has been researched along with Hypertension--Renovascular* in 10 studies

Other Studies

10 other study(ies) available for 3-nitrotyrosine and Hypertension--Renovascular

ArticleYear
Redox regulation and NO/cGMP plus K
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2018, Dec-01, Volume: 51

    One of the medicinal plants widely used by the population in the treatment of hypertension, atherosclerosis and circulatory disorders is Cuphea carthagenensis (Jacq.) J.F. Macbr. (Lythraceae), popularly known as 'sete sangrias', being found in Brazil, Hawaii and in South Pacific Islands. Despite the widespread use of this species by the population, its long-term antihypertensive and cardioprotective activities have not yet been scientifically evaluated.. To evaluate the possible cardioprotective effects of an ethanol-soluble fraction obtained from C. carthagenensis (ESCC) using ovariectomized hypertensive rats to simulate a broad part of the female population over 50 years of age affected by hypertension. In addition, the molecular mechanism that may be responsible for its cardiorenal protective effects was also explored.. Female Wistar rats were submitted to surgical procedures of bilateral ovariectomy and induction of renovascular hypertension (two-kidneys, one-clip model). The sham-operated group was used as negative control. ESCC was obtained and a detailed phytochemical investigation about its main secondary metabolites was performed. ESCC was orally administered at doses of 30, 100 and 300  mg/kg, daily, for 28 days, 5 weeks after surgery. Enalapril (15  mg/kg) was used as standard antihypertensive drug. Renal function was evaluated on days 1, 7, 14, 21 and 28. At the end of the experimental period, systolic, diastolic, mean arterial pressure and heart rate were recorded. The activity of the tissue enzymatic antioxidant system, thiobarbituric acid reactive substances, nitrotyrosine, nitrite, aldosterone and vasopressin levels, in addition to the activity of the angiotensin-converting enzyme were also evaluated. Additionally, vascular reactivity to acetylcholine, sodium nitroprusside, and phenylephrine, and the role of nitric oxide, prostaglandins, and K. ESCC-treatment induced an important cardiorenal protective response, preserving renal function and preventing elevation of blood pressure and heart rate in ovariectomized hypertensive rats. In addition, prolonged treatment with ESCC recovered mesenteric vascular reactivity at all doses used. This effect was associated with an important modulation of the antioxidant defense system with a possible increase in NO bioavailability. Additionally, NO/cGMP activation and K. A 28-days ESCC treatment reduces the progression of the cardiorenal disease in ovariectomized hypertensive rats. These effects seem to be involved with an attenuation of oxidative and nitrosative stress, affecting endothelial nitric oxide production and K

    Topics: Aldosterone; Animals; Antihypertensive Agents; Blood Pressure; Cuphea; Cyclic GMP; Endothelium, Vascular; Female; Hypertension, Renovascular; Nitric Oxide; Nitrites; Nitrosative Stress; Oxidation-Reduction; Oxidative Stress; Peptidyl-Dipeptidase A; Phytochemicals; Plant Extracts; Plants, Medicinal; Potassium Channels; Rats; Rats, Wistar; Thiobarbituric Acid Reactive Substances; Tyrosine; Vasodilator Agents; Vasopressins

2018
β1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy.
    Free radical biology & medicine, 2014, Volume: 73

    Hypertension induces left-ventricular hypertrophy (LVH) by mechanisms involving oxidative stress and unbalanced cardiac matrix metalloproteinase (MMP) activity. We hypothesized that β1-adrenergic receptor blockers with antioxidant properties (nebivolol) could reverse hypertension-induced LVH more effectively than conventional β1-blockers (metoprolol) when used at doses that exert similar antihypertensive effects. Two-kidney one-clip (2K1C) hypertension was induced in male Wistar rats. Six weeks after surgery, hypertensive and sham rats were treated with nebivolol (10 mg kg(-1)day(-1)) or metoprolol (20 mg kg(-1)day(-1)) for 4 weeks. Systolic blood pressure was monitored weekly by tail-cuff plethysmography. LV structural changes and fibrosis were studied in hematoxylin/eosin- and picrosirius-stained sections, respectively. Cardiac MMP levels and activity were determined by in situ zymography, gel zymography, and immunofluorescence. Dihydroethidium and lucigenin-derived chemiluminescence assays were used to assess cardiac reactive oxygen species (ROS) production. Nitrotyrosine levels were determined in LV samples by immunohistochemistry and green fluorescence and were evaluated using the ImageJ software. Cardiac protein kinase B/Akt (AKT) phosphorylation state was assessed by Western blot. Both β-blockers exerted similar antihypertensive effects and attenuated hypertension-induced cardiac remodeling. Both drugs reduced myocyte hypertrophy and collagen deposition in 2K1C rats. These effects were associated with lower cardiac ROS and nitrotyrosine levels and attenuation of hypertension-induced increases in cardiac MMP-2 levels and in situ gelatinolytic activity after treatment with both β-blockers. Whereas hypertension increased AKT phosphorylation, no effects were found with β-blockers. In conclusion, we found evidence that two β1-blockers with different properties attenuate hypertension-induced LV hypertrophy and cardiac collagen deposition in association with significant cardiac antioxidant effects and MMP-2 downregulation, thus suggesting a critical role for β1-adrenergic receptors in mediating those effects. Nebivolol is not superior to metoprolol, at least with respect to their capacity to reverse hypertension-induced LVH.

    Topics: Adrenergic beta-1 Receptor Antagonists; Animals; Antihypertensive Agents; Antioxidants; Benzopyrans; Blood Pressure; Down-Regulation; Ethanolamines; Hypertension, Renovascular; Hypertrophy, Left Ventricular; Kidney; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase Inhibitors; Metoprolol; Nebivolol; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Random Allocation; Rats; Rats, Wistar; Reactive Oxygen Species; Tyrosine; Ventricular Remodeling

2014
Sesamin exerts renoprotective effects by enhancing NO bioactivity in renovascular hypertensive rats fed with high-fat-sucrose diet.
    European journal of pharmacology, 2012, May-15, Volume: 683, Issue:1-3

    In the present study, we aimed to evaluate the protective effect of sesamin on kidney damage and renal endothelial dysfunction in two-kidney, one-clip renovascular hypertensive rats fed with a high-fat-sucrose diet (2K1C rats on HFS diet). Sesamin was intragastrically administered to 2K1C rats on HFS diet for eight weeks. Then, we measured the levels of serum hydrogen peroxide (H₂O₂), total antioxidant capability (T-AOC), renal malonaldehyde (MDA), total-erythrocuprein (T-SOD) and glutathione peroxidase (GSH-P(X)). The expressions of endothelial nitric oxide synthase (eNOS), nitrotyrosine and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox) in the left and right renal cortexes were detected by Western blotting. Pathological changes in the left and right renal cortexes were observed by periodic acid-schiff staining (PAS) and Masson's staining. Treatment with sesamin (120 and 60mg/kg⁻¹·d⁻¹) in 2K1C rats on HFS diet improved renal function, corrected structural abnormalities, and attenuated renal oxidative stress. Furthermore, sesamin increased eNOS protein expression and reduced nitrotyrosine and p47phox protein expression. These results demonstrated that long-term treatment with sesamin had renoprotective effect and improved renal endothelial dysfunction via upregulation of eNOS expression and reduction of NO oxidative inactivation in both clipped and contralateral kidneys of 2K1C rats on HFS diet, and sesamin may have a favorably therapeutic value in treating chronic kidney disease in patients with hypertension and hyperlipemia.

    Topics: Animals; Antihypertensive Agents; Antioxidants; Diet, High-Fat; Dietary Sucrose; Dioxoles; Dose-Response Relationship, Drug; Down-Regulation; Endothelium, Vascular; Hypertension, Renovascular; Hypolipidemic Agents; Kidney; Kidney Cortex; Lignans; Male; NADPH Oxidases; Nitric Oxide; Nitric Oxide Synthase Type III; Random Allocation; Rats; Rats, Sprague-Dawley; Tyrosine; Up-Regulation

2012
Sesamin improves endothelial dysfunction in renovascular hypertensive rats fed with a high-fat, high-sucrose diet.
    European journal of pharmacology, 2009, Oct-12, Volume: 620, Issue:1-3

    The present study was designed to evaluate the possible in vivo protective effects of sesamin on hypertension and endothelial function in two-kidney, one-clip renovascular hypertensive rats fed with a high-fat, high-sucrose diet (2K1C rats on HFS diet). Sesamin was orally administered for 8 weeks in 2K1C rats on HFS diet. Then, the serum malondialdehyde level was determined. The protein expression of endothelial nitric oxide synthase (eNOS), nitrotyrosine and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox) in aortas was detected by Western blotting. Vasorelaxation response to acetylcholine and nitroprusside, and functional assessment of nitric oxide (NO) bioactivity were also determined in aortic rings. Sesamin treatment reduced systolic blood pressure, improved vasodilatation induced by acetylcholine and enhanced NO bioactivity in the thoracic aortas. These changes were associated with increased eNOS, decreased malondialdehyde content, and reduced nitrotyrosine and p47(phox) protein expression. All these results suggest that chronic treatment with sesamin reduces hypertension and improves endothelial dysfunction through upregulation of eNOS expression and reduction of NO oxidative inactivation in 2K1C rats on HFS diet.

    Topics: Animals; Antihypertensive Agents; Aorta; Blood Pressure; Dietary Carbohydrates; Dietary Fats; Dioxoles; Endothelium, Vascular; Gene Expression Regulation; Hypertension, Renovascular; Lignans; Lipids; Male; Malondialdehyde; NADPH Oxidases; Nitric Oxide Synthase Type III; Rats; Rats, Sprague-Dawley; Sucrose; Tyrosine

2009
Genetic suppression of HO-1 exacerbates renal damage: reversed by an increase in the antiapoptotic signaling pathway.
    American journal of physiology. Renal physiology, 2007, Volume: 292, Issue:1

    Apoptosis has been shown to contribute to the development of acute and chronic renal failure. The antiapoptotic action of the heme oxygenase (HO) system may represent an important protective mechanism in kidney pathology. We examined whether the lack of HO-1 would influence apoptosis in clipped kidneys of two-kidney, one-clip (2K1C) rats. Five-day-old Sprague-Dawley rats were injected in the left ventricle with approximately 5 x 10(9) colony-forming units/ml of retrovirus containing rat HO-1 antisense (LSN-RHO-1-AS) or control retrovirus (LXSN). After 3 mo, a 0.25-mm U-shaped silver clip was placed around the left renal artery. Animals were killed 3 wk later. Clipping the renal artery in LSN-RHO-1-AS rats did not result in increased HO-1 expression. In contrast to LXSN animals, 2K1C LSN-RHO-1-AS rats showed increased expression of cyclooxygenase 2 (COX-2) and higher 3-nitrotyrosine (3-NT) content as well as increased expression of the proapoptotic protein Apaf-1 and caspase-3 activity. Clipping the renal artery in LXSN rats resulted in increased expression of the antiapoptotic proteins Bcl-2 and Bcl-xl, while clipping the renal artery in LSN-RHO-1-AS rats did not change Bcl-2 levels and decreased the levels of Bcl-xl. Treatment of LSN-RHO-1-AS rats with cobalt protoporphyrin resulted in induction of renal HO-1, which was accompanied by decreases in blood pressure, COX-2, 3-NT, and caspase-3 activity, and increased expression of anti-apoptotic molecules (Bcl-2, Bcl-xl, Akt and p-Akt) in the clipped kidneys. These findings underscore the prominent role of HO-1 in counteracting apoptosis in this 2K1C renovascular hypertension model.

    Topics: Animals; Apoptosis; Blood Pressure; Blotting, Western; Cell Nucleus; Creatine; Cyclooxygenase 2; DNA Fragmentation; Gene Expression Regulation, Enzymologic; Genetic Vectors; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Hypertension, Renovascular; Kidney Diseases; Protoporphyrins; Rats; Rats, Sprague-Dawley; Renal Artery; Retroviridae; RNA, Antisense; Signal Transduction; Tyrosine

2007
Induction of heme oxygenase-1 in renovascular hypertension is associated with inhibition of apoptosis.
    Cellular and molecular biology (Noisy-le-Grand, France), 2007, May-15, Volume: 53, Issue:4

    The goal of this study was to characterize the impact of induction or inhibition of the heme-HO system on renal apoptosis in clipped and non-clipped kidneys from 2K1C hypertensive rats. Male Sprague-Dawley rats had a 0.25 mm silver clip placed around the left renal artery. Four groups of rats were studied: sham operated animals, 2K1C control rats, 2K1C rats received weekly injections of CoPP (5 mg/100 g body wt, administered subcutaneously), and 2K1C rats pretreated with SnMP (5 mg/ 100g body wt, administered intraperitoneally three times a week). The animals were sacrificed three weeks after surgery. We measured systolic blood pressure, plasma renin activity, non-clipped and clipped kidney HO-1 and HO-2 protein expression, HO activity, heme content, nitrotyrosine levels, and activation of selected pro- and anti-apoptotic proteins. Systolic blood pressure and plasma renin activity were significantly higher in 2K1C rats compared to sham rats. Compared to kidneys from sham animals, clipped kidneys from 2K1C rats showed a significant increase in HO-1 expression with increases in HO activity (26%), heme content (47%) and nitrotyrosine levels (49%), accompanied by an increase in caspase-3 and caspase-9 activity. In contrast, non-clipped kidneys from 2K1C rats showed no differences in HO-1 expression, HO activity, heme content, nitrotyrosine levels and caspase activity compared to sham rats. In clipped kidneys from 2K1C rats, inhibition of HO activity by SnMP augmented caspase-3 and caspase-9 activity and decreased expression of the anti-apoptotic Bcl-2 protein, while induction of HO-1 with CoPP strongly inhibited the activity of both caspases and increased the induction of Bcl-2 and Bcl-xl proteins. These findings demonstrate that the clipped kidneys responded to decreased renal perfusion pressure and increased oxidative stress by activation of the heme-HO system, which exerts antiapoptotic action via mechanisms involving decreased caspase-3 and caspase-9 activity, and increased expression of antiapoptotic molecules.

    Topics: Animals; Apoptosis; bcl-X Protein; Caspases; Gene Expression Regulation; Heme; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Hypertension, Renovascular; Kidney; Male; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Tyrosine

2007
Homocysteine-dependent cardiac remodeling and endothelial-myocyte coupling in a 2 kidney, 1 clip Goldblatt hypertension mouse model.
    Canadian journal of physiology and pharmacology, 2005, Volume: 83, Issue:7

    Accumulation of interstitial collagen (fibrosis) between the endothelium and myocytes is one of the hallmarks of cardiac failure in renovascular hypertension (RVH). Renal insufficiency increases plasma homocysteine (Hcy), and levels of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) are inversely related to plasma Hcy levels. We hypothesize that in RVH, accumulation of collagen between the endothelium and myocytes leads to endothelial-myocyte disconnection and uncoupling, in part, by hyperhomocysteinemia. Furthermore, we hypothesize that Hcy increases reactive oxygen species, generates nitrotyrosine, activates latent matrix metalloproteinase, and decreases the levels of endothelial nitric oxide in response to antagonizing PPAR-gamma. To create RVH in mice, the left renal artery was clipped with 0.4-mm silver wire for the 2 kidney, 1 clip (2K1C) method. Sham surgery was used as a control. To induce PPAR-gamma, 8 microg/mL ciglitazone (CZ) was administered to drinking water 2 days before surgery and continued for 4 weeks. Mice were grouped as 2K1C, sham, 2K1C+CZ, or sham+CZ (n = 6 in each group). Plasma Hcy increased 2-fold in the 2K1C-treated group (p < 0.05) as compared with the sham, and CZ had no effect on Hcy levels as compared to the 2K1C-treated group. Hcy binding in cardiac tissue homogenates decreased in the 2K1C-treated group but was substantially higher in the CZ-treated group. Cardiac reactive oxygen species levels were increased and endothelial nitric oxide were decreased in the 2K1C-treated group. Matrix metalloproteinase-2 and -9 activities were increased in the 2K1C-treated group compared with the control. Levels of cardiac inhibitor of metalloproteinase were decreased, whereas there was no change in tissue inhibitor of metalloproteinase-1 expression in the 2K1C-treated group vs. the sham-treated group. Collagen and nitrotyrosine levels were increased in the 2K1C-treated group, but mice treated with CZ showed lower levels comparatively. Cardiac transferase deoxyuridine nick-end labeling-positive cells were increased, and muscle cells were impaired in the 2K1C-treated mice vs. the sham-control mice. This was associated with decreased acetylcholine and bradykinin responses, which suggests endothelial-myocyte uncoupling in 2K1C-treated mice. Our results suggest that fibrosis between the endothelium and myocytes leads to an endothelial-myocyte disconnection and uncoupling by Hcy accumulation secondary to increased reactive oxygen s

    Topics: Acetylcholine; Animals; Blotting, Western; Collagen; Endothelin-1; Endothelium, Vascular; Fibrosis; Homocysteine; Hypertension, Renovascular; Hypoglycemic Agents; Kidney; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Myocardial Contraction; Myocytes, Cardiac; Nitroprusside; PPAR gamma; Proteinuria; Thiazolidinediones; Tissue Inhibitor of Metalloproteinase-1; Tyrosine; Vasodilator Agents; Ventricular Remodeling

2005
Hypertension induced by aortic coarctation above the renal arteries is associated with immune cell infiltration of the kidneys.
    American journal of hypertension, 2005, Volume: 18, Issue:11

    Renal tubulointerstitial infiltration of activated T cells and macrophages is invariably present and plays a role in elevation of arterial pressure in nearly all animal models of hypertension (HTN). The role, if any, of elevated renal arterial pressure in the pathogenesis of this inflammatory process is uncertain. Also unclear is whether the cellular infiltration is caused by the local activation of immune cells in the kidney or a consequence of leukocyte activation in the systemic circulation.. We studied activation of peripheral blood leukocytes and cellular infiltration in the kidneys of Sprague-Dawley rats with abdominal aorta coarctation (banding) above renal arteries, which causes severe HTN proximal but not distal to coarctation.. Compared with the sham operated controls, the aorta-banded group exhibited tubulointerstitial accumulation of activated T cells, macrophages, angiotensin-II positive cells, leukocyte function-associated antigen-1 integrin expressing cells, increased nitrotyrosine abundance (a measure of oxidative stress), and increased macrophage chemoattractant protein-1 in the kidneys which are not exposed to HTN in this model. These findings were associated with the activation of the circulating leukocytes in the aorta-banded animals.. Increased baromechanical stress is not a requisite for accumulation of T cells and macrophages in the kidney in the coarctation-induced HTN and possibly in other hypertensive disorders. On the contrary, renal hypoperfusion and the consequent activation of renin-angiotensin system may mediate this process by promoting local induction of chemoattractant and inflammatory cytokines. The observed tubulointerstitial inflammation in this model is associated with leukocyte activation in the systemic circulation.

    Topics: Angiotensin II; Animals; Aortic Coarctation; Chemokine CCL2; Flow Cytometry; Hydrogen Peroxide; Hypertension, Renovascular; Integrins; Kidney; Leukocytes; Lymphocytes; Macrophages; Male; Rats; Rats, Sprague-Dawley; Tyrosine

2005
Role of angiotensin II and free radicals in blood pressure regulation in a rat model of renal hypertension.
    Hypertension (Dallas, Tex. : 1979), 2001, Volume: 38, Issue:3

    One-kidney, 1-clip rats (1K1C) or uninephrectomized controls were treated with either the superoxide dismutase mimetic tempol (0.5 mmol. kg(-1). d(-1)), angiotension type 1 receptor inhibitor losartan (50 mmol. L(-1). kg(-1). d(-1)), or both (n=6 per group) for 2 weeks. At the end of the study, systolic blood pressure (BP) decreased on average by 21% in tempol-treated and 29% in losartan-treated versus untreated 1K1C (217+/-4.4 mm Hg) and was normalized in the losartan plus tempol group. Mean BP also decreased from 159+/-3.7 mm Hg in 1K1C to 93+/-2.8 mm Hg in the losartan plus tempol group. Also, aortic wall area was reduced by 18% in losartan- or tempol-treated 1K1C and by 30% in losartan plus tempol rats compared with untreated 1K1C. Plasma renin activity was increased from 4.8+/-0.3 in untreated 1K1C to 15.9+/-0.9 ng. mL(-1). h(-1) in losartan-treated but not tempol-treated 1K1C. Superoxide generation by the isolated aortic rings assessed by lucigenin chemiluminescence was significantly decreased (by approximately 40%) in all losartan, tempol, and losartan plus tempol groups compared with untreated 1K1C. Nitrotyrosine ELISA in the kidney displayed a significant reduction, from 59+/-13 ng/mg of protein in 1K1C to 12.5+/-5 ng/mg of protein in the losartan plus tempol 1K1C. Western blotting for nNOS in kidney cortex and medulla showed a protein increase in both fractions of 1K1C versus controls and was normalized by losartan plus tempol treatment. Collectively, data show a synergistic effect of losartan and tempol on BP reduction in 1K1C rats. The mechanism may involve reduced superoxide production and nitrotyrosine formation in kidney and decreased kidney neuronal-type NO synthase expression in treated animals. This status in the oxidative balance seems to affect BP in the renal hypertensive rats.

    Topics: Angiotensin II; Angiotensin Receptor Antagonists; Animals; Aorta, Thoracic; Blood Pressure; Blotting, Western; Cyclic N-Oxides; Disease Models, Animal; Free Radical Scavengers; Free Radicals; Hypertension, Renovascular; Losartan; Male; Nephrectomy; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Renal Artery; Renin; Spin Labels; Superoxides; Systole; Time Factors; Tyrosine

2001
Immunohistochemically detected protein nitration indicates sites of renal nitric oxide release in Goldblatt hypertension.
    Hypertension (Dallas, Tex. : 1979), 1997, Volume: 30, Issue:4

    In the kidney, nitric oxide (NO) from the macula densa (MD) is considered an integral modulator of the tubulovascular message system, whereas endothelium-derived NO is a major vasorelaxing factor. The goal of the present study was to determine extracellular pathways of NO in rats with renovascular two-kidney, one clip Goldblatt hypertension (2K1C). To localize NO in the tissue, immunohistochemical detection of NO-dependent tyrosine nitration was performed using a monoclonal antibody against nitrotyrosine. Nitration of phenolic compounds such as tyrosine results from the reaction with peroxynitrite (ONOO ) formed by NO and molecular oxygen or superoxide and may therefore be used as a footprint for local release of NO. Significant nitrotyrosine immunoreactivity was detected in the extraglomerular mesangium (EGM) of the stenotic kidney in 2K1C rats, whereas in the nonclipped contralateral kidney and in control animals no signal was detected at this site. Positive staining of the EGM was paralleled by enhanced NADPH diaphorase (NADPH-d) staining of the adjacent MD, signifying increased type I nitric oxide synthase (NOS) activity in the stenotic kidney. In contrast, in the cortical vasculature selectively enhanced nitrotyrosine immunoreactivity was detected in the arteriolar wall of the nonclipped contralateral kidney, and endothelial NADPH-d signal, indicating NOS Type III activity, was enhanced in parallel. Our results suggest that in MD, stimulation of NOS in the stenotic Goldblatt kidney induces the release of NO into the EGM. From there an NO-dependent intermediate stimulus may reach the glomerular vasculature. Footprints of NO-dependent effects in the vascular smooth muscle layer of the non-clipped contralateral kidney indicate a marked vasodilatory response that may have been caused by enhanced shear stress and/or angiotensin II levels.

    Topics: Animals; Blood Vessels; Hypertension, Renovascular; Immunohistochemistry; Juxtaglomerular Apparatus; Kidney; Male; Nitrates; Nitric Oxide; Rats; Rats, Sprague-Dawley; Renal Circulation; Tissue Distribution; Tyrosine

1997