3-nitrotyrosine and Hearing-Loss--Noise-Induced

3-nitrotyrosine has been researched along with Hearing-Loss--Noise-Induced* in 5 studies

Other Studies

5 other study(ies) available for 3-nitrotyrosine and Hearing-Loss--Noise-Induced

ArticleYear
The role of oxidative stress in the susceptibility of noise-impaired cochleae to synaptic loss induced by intracochlear electrical stimulation.
    Neuropharmacology, 2021, 09-15, Volume: 196

    Intracochlear electrical stimulation (ES) generated by cochlear implants (CIs) is used to activate auditory nerves to restore hearing perception in deaf subjects and those with residual hearing who use electroacoustic stimulation (EAS) technology. Approximately 1/3 of EAS recipients experience loss of residual hearing a few months after ES activation, but the underlying mechanism is unknown. Clinical evidence indicates that the loss is related to the previous history of noise-induced hearing loss (NIHL). In this report, we investigated the impact of intracochlear ES on oxidative stress levels and synaptic counts in inner hair cells (IHCs) of the apical, middle and basal regions of guinea pigs with normal hearing (NH) and NIHL. Our results demonstrated that intracochlear ES with an intensity of 6 dB above the thresholds of electrically evoked compound action potentials (ECAPs) could induce the elevation of oxidative stress levels, resulting in a loss of IHC synapses near the electrodes in the basal and middle regions of the NH cochleae. Furthermore, the apical region of cochleae with NIHL were more susceptible to synaptic loss induced by relatively low-intensity ES than that of NH cochleae, resulting from the additional elevation of oxidative stress levels and the reduced antioxidant capability throughout the whole cochlea.

    Topics: Action Potentials; Aldehydes; Animals; Antioxidants; Cochlea; Cochlear Implants; Electric Stimulation; Evoked Potentials, Auditory, Brain Stem; Fatty Acids, Unsaturated; Guinea Pigs; Hair Cells, Auditory, Inner; Hearing Loss, Noise-Induced; Hydroxy Acids; Isoindoles; Organoselenium Compounds; Oxidative Stress; Severity of Illness Index; Synapses; Tyrosine

2021
The histone deacetylase inhibitor sodium butyrate protects against noise-induced hearing loss in Guinea pigs.
    Neuroscience letters, 2017, Nov-01, Volume: 660

    Noise-induced hearing loss (NIHL) severely impacts the quality of life of affected individuals. Oxidative stress resulting from noise exposure is a significant cause of NIHL. Although histone deacetylase (HDAC) inhibitors were shown to protect against NIHL, the underlying mechanism remains unclear, and it is not known how they act on noise-induced oxidative stress. In the current study, we investigated the expression levels of acetyl-histone H3 (Lys9) (H3-AcK9), histone deacetylase 1 (HDAC1), and 3-nitrotyrosine (3-NT), an oxidative stress marker, in a guinea pig model of NIHL using immunohistology and Western blotting. We then assessed the effects of systemic administration of the HDAC inhibitor, sodium butyrate (SB), on noise-induced permanent threshold shifts (PTS), hair cell (HC) loss, and changes in the above mentioned markers. The results showed that SB attenuated noise-induced PTS and outer hair cell loss. SB treatment promoted H3-AcK9 expression and repressed HDAC1 expression in the nuclei of HCs and Hensen's cells after noise exposure. Furthermore, SB attenuated the noise-induced increase of 3-NT expression in HCs and Hensen's cells. These findings suggest that SB protects against NIHL by reversing the noise-induced histone acetylation imbalance and inhibiting oxidative stress in cochlear HCs and Hensen's cells. SB treatment may represent a potential strategy to prevent and treat NIHL.

    Topics: Animals; Butyric Acid; Evoked Potentials, Auditory, Brain Stem; Guinea Pigs; Hair Cells, Auditory, Outer; Hearing Loss, Noise-Induced; Histone Deacetylase 1; Histone Deacetylase Inhibitors; Histones; Male; Tyrosine

2017
Autophagy attenuates noise-induced hearing loss by reducing oxidative stress.
    Antioxidants & redox signaling, 2015, May-20, Volume: 22, Issue:15

    Reactive oxygen species play a dual role in mediating both cell stress and defense pathways. Here, we used pharmacological manipulations and siRNA silencing to investigate the relationship between autophagy and oxidative stress under conditions of noise-induced temporary, permanent, and severe permanent auditory threshold shifts (temporary threshold shift [TTS], permanent threshold shift [PTS], and severe PTS [sPTS], respectively) in adult CBA/J mice.. Levels of oxidative stress markers (4-hydroxynonenal [4-HNE] and 3-nitrotyrosine [3-NT]) increased in outer hair cells (OHCs) in a noise-dose-dependent manner, whereas levels of the autophagy marker microtubule-associated protein light chain 3 B (LC3B) were sharply elevated after TTS but rose only slightly in response to PTS and were unaltered by sPTS noise. Furthermore, green fluorescent protein (GFP) intensity increased in GFP-LC3 mice after TTS-noise exposure. Treatment with rapamycin, an autophagy activator, significantly increased LC3B expression, while diminishing 4-HNE and 3-NT levels, reducing noise-induced hair cell loss, and, subsequently, noise-induced hearing loss (NIHL). In contrast, treatment with either the autophagy inhibitor 3-methyladenine (3MA) or LC3B siRNA reduced LC3B expression, increased 3-NT and 4-HNE levels, and exacerbated TTS to PTS.. This study demonstrates a relationship between oxidative stress and autophagy in OHCs and reveals that autophagy is an intrinsic cellular process that protects against NIHL by attenuating oxidative stress.. The results suggest that the lower levels of oxidative stress incurred by TTS-noise exposure induce autophagy, which promotes OHC survival. However, excessive oxidative stress under sPTS-noise conditions overwhelms the beneficial potential of autophagy in OHCs and leads to OHC death and NIHL.

    Topics: Acetylcysteine; Aldehydes; Animals; Antioxidants; Autophagy; Hair Cells, Auditory, Outer; Hearing Loss, Noise-Induced; Male; Mice; Microtubule-Associated Proteins; Oxidative Stress; Sirolimus; Tyrosine

2015
Post exposure administration of A(1) adenosine receptor agonists attenuates noise-induced hearing loss.
    Hearing research, 2010, Volume: 260, Issue:1-2

    Adenosine is a constitutive cell metabolite with a putative role in protection and regeneration in many tissues. This study was undertaken to determine if adenosine signalling pathways are involved in protection against noise injury. A(1) adenosine receptor expression levels were altered in the cochlea exposed to loud sound, suggesting their involvement in the development of noise injury. Adenosine and selective adenosine receptor agonists (CCPA, CGS-21680 and Cl-IB-MECA) were applied to the round window membrane of the cochlea 6h after noise exposure. Auditory brainstem responses measured 48h after drug administration demonstrated partial recovery of hearing thresholds (up to 20dB) in the cochleae treated with adenosine (non-selective adenosine receptor agonist) or CCPA (selective A(1) adenosine receptor agonist). In contrast, the selective A(2A) adenosine receptor agonist CGS-21680 and A(3) adenosine receptor agonist Cl-IB-MECA did not protect the cochlea from hearing loss. Sound-evoked cochlear potentials in control rats exposed to ambient noise were minimally altered by local administration of the adenosine receptor agonists used in the noise study. Free radical generation in the cochlea exposed to noise was reduced by administration of adenosine and CCPA. This study pinpoints A(1) adenosine receptors as attractive targets for pharmacological interventions to reduce noise-induced cochlear injury after exposure.

    Topics: Acoustic Stimulation; Adenosine; Adenosine A1 Receptor Agonists; Animals; Auditory Threshold; Cochlea; Cochlear Microphonic Potentials; Disease Models, Animal; Evoked Potentials, Auditory, Brain Stem; Hearing Loss, Noise-Induced; Male; Oxidative Stress; Phenethylamines; Rats; Rats, Wistar; Receptor, Adenosine A1; Time Factors; Tyrosine

2010
Post-exposure treatment attenuates noise-induced hearing loss.
    Neuroscience, 2005, Volume: 134, Issue:2

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are involved in sensory cell and neural death in the peripheral nervous system, including damage induced by noise trauma. Antioxidant administration prior to or concomitant with noise exposure can prevent auditory deficits, but the efficacy of a delayed treatment is not known. We have recently found continued reactive oxygen species/reactive nitrogen species formation in the ear for 7-10 days following noise exposure and reasoned that antioxidant intervention during this period should also reduce noise-induced hearing loss. Guinea-pigs were subjected to 4 kHz octave band noise at 120 decibels sound- pressure-level (dB SPL) for 5 hours and received treatment with ROS and RNS scavengers (salicylate and trolox) beginning 3 days prior, 1 hour, 1, 3, or 5 days after noise exposure. Auditory thresholds were assessed by sound-evoked auditory brainstem response at 4, 8, and 16 kHz, before and 10 days after noise exposure. Hair cell damage was analyzed by quantitative histology, and free radical activity was determined immunohistochemically via 4-hydroxynonenal and nitrotyrosine as markers of reactive oxygen species and reactive nitrogen species action. Delivered up to 3 days after noise exposure, salicylate and trolox significantly reduced auditory brainstem response deficits, reduced hair cell damage, and decreased reactive oxygen species and reactive nitrogen species formation. Earlier drug treatment was more effective than later treatment. Our results detail a window of opportunity for rescue from noise trauma, and provide evidence for both morphological and functional protection by delayed pharmacological intervention.

    Topics: Aldehydes; Animals; Cochlea; Guinea Pigs; Hearing Loss, Noise-Induced; Immunohistochemistry; Male; Reactive Oxygen Species; Sound; Time Factors; Tyrosine

2005