3-nitrotyrosine has been researched along with Fibrosarcoma* in 5 studies
5 other study(ies) available for 3-nitrotyrosine and Fibrosarcoma
Article | Year |
---|---|
Involvement of reactive nitrogen oxides for acquisition of metastatic properties of benign tumors in a model of inflammation-based tumor progression.
The cells of a weakly tumorigenic and non-metastatic murine fibrosarcoma (QR-32) are converted into highly malignant tumors (acquiring metastatic potential) once they have grown in vivo after being co-implanted with gelatin sponge which induces inflammation. In the present study, we examined whether nitric oxide (NO) is involved in the inflammation-based tumor progression by administrating a specific inhibitor to inducible nitric oxide synthase, aminoguanidine (AG). First, we co-implanted 1 x 10(5) QR-32 cells with gelatin sponge (10 x 5 x 3 mm piece) into a subcutaneous space in C57BL6 mice. Administration of AG in drinking water (1%) had started 2 days before the tumor implantation and continued until the termination of the experiment. The incidence of tumor formation and the tumor growth did not differ between AG-treated group and -untreated group. On day 28, we excised the arising tumors to establish culture cell lines for evaluation of their acquisition of metastatic phenotype in other normal mice. Metastasis incidence and the number of metastatic colonies were significantly reduced in the tumor cell lines obtained from AG-treated mice compared to those from non-treated mice (p < 0.05). Immunohistochemical analysis demonstrated that inducible nitric oxide synthase and nitrotyrosine in the inflamed lesion were reduced in the AG-administered mice. However, intensity of 8-hydroxy-2-deoxyguanosine was not different between the groups. These results showed that nitric oxide and its reactive nitrogen oxide species cooperatively play a pivotal role in the progression of benign tumor cells in inflamed lesions. Topics: Animals; Cell Movement; Cell Proliferation; Disease Progression; Female; Fibrosarcoma; Gelatin Sponge, Absorbable; Guanidine; Guanine; Inflammation; Mice; Mice, Inbred C57BL; Neoplasm Metastasis; Neoplasm Transplantation; Nitric Oxide Synthase Type II; Oxidation-Reduction; Reactive Nitrogen Species; Tyrosine | 2006 |
Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression.
QR-32 tumor cells, a clone derived from a murine fibrosarcoma, are poorly tumorigenic and nonmetastatic when injected into syngeneic C57BL/6 mice. However, they are converted to highly malignant ones once they have grown in vivo after being co-implanted in a subcutaneous site with a foreign body, a gelatin sponge. Early phase of inflammation induced by the gelatin sponge participates in the conversion and histological analysis shows predominant infiltration of neutrophils. The objective of this study was to determine whether the depletion of the infiltrating neutrophils has any effect on the tumor progression. Intraperitoneal administration of a monoclonal anti-granulocyte antibody, RB6-8C5 (RB6), depleted neutrophils from both the peripheral blood circulation and the local inflamed site in mice with co-implantation of QR-32 tumor cells and gelatin sponge. The RB6 administration did not inhibit either tumor development or growth of QR-32 tumor cells. In contrast, tumor cell lines established from RB6-administered mice showed a significant decrease in metastatic incidence as compared with the tumor cell lines obtained from the mice with administration of control rat IgG or saline. Metastatic ability was significantly suppressed when RB6 had been administered in the early phase (from day -2 to day 6 after implantation); however, the administration in the middle (from day 6 to day 14) or late (from day 14 to day 22) phase did not affect the metastatic ability. We confirmed the phenomena by using integrin beta(2) knockout mice that had impaired neutrophil infiltration into inflamed sites. In the knockout mice, neutrophils hardly infiltrated into the gelatin sponge and the tumors showed dramatically suppressed metastatic phenotype as compared with those in wild-type mice or nude mice. Immunohistochemical analysis demonstrated that expressions of 8-hydroxy-2'-deoxyguanosine and nitrotyrosine were parallel to those in the presence of neutrophils. These results suggested that inflammation, especially when neutrophils infiltrate into tumor tissue, is primarily important for benign tumor cells to acquire metastatic phenotype. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antibodies, Monoclonal; Blood Cells; CD18 Antigens; Cell Line, Tumor; Complement System Proteins; Cytotoxicity, Immunologic; Deoxyguanosine; Disease Progression; Drug Administration Schedule; Fibrosarcoma; Granulocytes; Immunohistochemistry; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Mice, Nude; Neutrophil Infiltration; Neutrophils; Phenotype; Time Factors; Tyrosine | 2003 |
Dietary vitamin E affects neutrophil distribution and genetic instability in murine Mutatect tumors.
Vitamin E is best known for its ability to scavenge reactive oxygen and nitrogen species. Solid tumors are frequently infiltrated with leukocytes, a potential source of these reactive species. The Mutatect tumor model is a fibrosarcoma that can be grown subcutaneously in syngeneic C57BL/6 mice. We previously showed that these tumors are infiltrated with neutrophils and that the number of neutrophils correlates with the number of hypoxanthine phosphoribosyl transferase (hprt) mutations and loss of an interleukin-8 (IL-8) transgene. Neutrophils are a source of nitric oxide, and tumors contain nitrotyrosine, a marker of damage by nitric oxide-related species. We also showed previously that dietary vitamin E supplements markedly lower the frequency of hprt mutants and the level of myeloperoxidase (a neutrophil marker) in a tumor fraction containing "loosely bound" cells. In the present report, we examine the effect of dietary vitamin E in greater detail. No effect on inducible nitric oxide synthase expression or nitrotyrosine levels was observed. However, dietary vitamin E induced a major redistribution of neutrophils from the loosely bound cellular fraction to the "stromal" fraction, while the total number of neutrophils in tumors was essentially unchanged. The loss of the IL-8 transgene seen earlier in Mutatect tumors was largely prevented. Vitamin E also prevented the large increase in hprt mutants (in the cellular and stromal fractions). Thus vitamin E appears to be protective against genotoxicity by scavenging reactive species, but also its ability to affect the distribution of neutrophils within tumors may be important. Topics: Animals; Diet; Female; Fibrosarcoma; Hypoxanthine Phosphoribosyltransferase; Interleukin-8; Mice; Mice, Inbred C57BL; Mutation; Neutrophils; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Transgenes; Tyrosine; Vitamin E | 2002 |
Selective nitration of histone tyrosine residues in vivo in mutatect tumors.
Nitric oxide-derived reactive species have been implicated in many disorders. Protein nitrotyrosine is often used as a stable marker of these reactive species. Using immunohistochemistry, we have previously detected nitrotyrosine in murine Mutatect tumors, where neutrophils are the principal source of nitric oxide. We now report on the identification of several prominent nitrotyrosine-containing proteins. Using Western blot analysis, nitrotyrosine in higher molecular mass proteins (>20 kDa) was detected in tumors containing a high number of neutrophils but not in tumors with fewer neutrophils. Staining for nitrotyrosine was consistently seen in low molecular mass proteins (< or =15 kDa), regardless of the level of neutrophils. Protein nitrotyrosine was not seen in Mutatect cells growing in vitro. Treatment with nitric oxide donors produced nitration of < or =15-kDa proteins, but only after extended periods. These small proteins, both from tumors and cultured cells, were identified by mass spectrometry to be histones. Only a subset of tyrosine residues was nitrated. Selective nitration may reflect differential accessibility of different tyrosine residues and the influence of neighboring residues within the nucleosome. The prominence of histone nitration may reflect its relative stability, making this post-translational modification a potentially useful marker of extended exposure of cells or tissues to nitric oxide-derived reactive species. Topics: Animals; Blotting, Western; Fibrosarcoma; Histones; Interleukin-2; Interleukin-8; Mice; Neutrophils; Nitric Oxide; Nitrites; Nucleosomes; Tumor Cells, Cultured; Tyrosine | 2002 |
Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model.
Mutatect MN-11 is a tumor line that can be grown subcutaneously in syngeneic C57BL/6 mice. The frequency of spontaneously arising mutants at the hypoxanthine phosphoribosyltransferase (Hprt) locus was observed to be elevated as a result of in vivo growth. The objective of the present study was to identify factors in the tumor microenvironment that might explain this increase in mutant frequency (MF). When tumors were examined histologically, neutrophils were found to be the predominant infiltrating cell type. Quantitative estimates of the number of neutrophils and MF of tumors in different animals revealed a statistically significant correlation (r = 0.63, P < 0.0001). Immunohistochemical analysis for inducible nitric oxide synthase (iNOS) demonstrated its presence, mainly in neutrophils. Biochemical analysis of tumor homogenates for nitric oxide synthase (NOS) activity indicated a statistically significant correlation with MF (r = 0.77, P < 0.0001). Nitrotyrosine was detected throughout the tumor immunohistochemically; both cytoplasmic and nuclear staining was seen. To increase the number of infiltrating neutrophils, tumors were injected with chemoattractant interleukin-8 and prostaglandin E2. This produced a statistically significant increase in neutrophil content (P = 0.005) and MF (P = 0.0002). As in control MN-11 tumors, neutrophil content and MF were strongly correlated (r = 0.63, P = 0. 003). Because neutrophils are a potential source of genotoxic reactive oxygen and/or nitrogen species, our results support the notion that these tumor-infiltrating cells may be mutagenic and contribute to the burden of genetic abnormalities associated with tumor progression. Topics: Animals; Cell Movement; Dinoprostone; Drug Combinations; Female; Fibrosarcoma; Gene Frequency; Genetic Variation; Immunohistochemistry; Injections; Injections, Subcutaneous; Interleukin-8; Mice; Mice, Inbred C57BL; Mutation; Neoplasm Transplantation; Neutrophils; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Tumor Cells, Cultured; Tyrosine | 2000 |