3-nitrotyrosine and Erectile-Dysfunction

3-nitrotyrosine has been researched along with Erectile-Dysfunction* in 2 studies

Trials

1 trial(s) available for 3-nitrotyrosine and Erectile-Dysfunction

ArticleYear
Evaluation of tetrahydrobiopterin (BH4) as a potential therapeutic agent to treat erectile dysfunction.
    Asian journal of andrology, 2006, Volume: 8, Issue:2

    Nitric oxide (NO)-mediated smooth muscle relaxation causes penile erections. The endothelial NO synthase (eNOS) coenzyme tetrahydrobiopterin (BH4) converts eNOS-mediated catalytic activity from oxygen radical to NO production, improving endothelial function and vascular smooth muscle relaxation.. Using quantitative immunohistochemistry, 8-isoprostane and nitrotyrosine concentrations were compared in cavernosal tissue from 17 potent and 7 impotent men, and the effect of single oral doses of BH4 on penile rigidity and tumescence was investigated. The pharmacodynamic effect of single oral doses of BH4 on penile rigidity and tumescence was investigated in a randomized, placebo-controlled, double-blind cross-over fashion in 18 patients with erectile dysfunction (ED) while receiving visual sexual stimulation.. 8-Isoprostane content in endothelium and smooth muscle was significantly higher in impotent patient samples; the level of nitrotyrosine was unchanged in ED patients. Relative to placebo, a single dose of 200 mg BH4 led to a mean increase in duration of > 60% penile rigidity (33.5 min [95% confidence interval (CI): 13.1-49.3] at base and 29.4 min [95% CI: 8.9-42.2] at tip). A 500-mg dose increased the relative duration of > 60% penile rigidity by 36.1 min (95% CI: 16.3-51.8) at the base and 33.7 min (95% CI: 11.4-43.9) at the tip. Treatments were well tolerated.. BH4 treatment is suggested to switch eNOS catalytic activity from super-oxide to NO formation, leading to a reduced formation of free radical reaction product 8-isoprostane without alteration of nitrotyrosine. The observed results make BH4 a suitable candidate as an ED treatment through reconstitution of altered catalytic activity of the eNOS.

    Topics: Adolescent; Adult; Aged; Biopterins; Cross-Over Studies; Dinoprost; Double-Blind Method; Erectile Dysfunction; Humans; Immunohistochemistry; In Vitro Techniques; Male; Middle Aged; Muscle, Smooth, Vascular; Nitric Oxide; Penile Erection; Penis; Tyrosine

2006

Other Studies

1 other study(ies) available for 3-nitrotyrosine and Erectile-Dysfunction

ArticleYear
Role of oxidative stress-induced systemic and cavernosal molecular alterations in the progression of diabetic erectile dysfunction.
    Journal of diabetes, 2015, Volume: 7, Issue:3

    Erectile dysfunction (ED) is a prevalent complication of diabetes, and oxidative stress is an important feature of diabetic ED. Oxidative stress-induced damage plays a pivotal role in the development of tissue alterations. However, the deleterious effects of oxidative stress in the corpus cavernosum with the progression of diabetes remain unclear. The aim of this study was to evaluate systemic and penile oxidative stress status in the early and late stages of diabetes.. Male Wistar streptozotocin-diabetic rats (and age-matched controls) were examined 2 (early) and 8 weeks (late) after the induction of diabetes. Systemic oxidative stress was evaluated by urinary H2 O2 and the ratio of circulating reduced/oxidized glutathione (GSH/GSSG). Penile oxidative status was assessed by H2 O2 production and 3-nitrotyrosine (3-NT) formation. Cavernosal endothelial nitric oxide synthase (eNOS) was analyzed by quantitative immunohistochemistry. Dual immunofluorescence was also performed for 3-NT and α-smooth muscle actin (α-SMA) and eNOS-α-SMA.. There was a significant increase in urinary H2 O2 levels in both diabetic groups. The plasma GSH/GSSG ratio was significantly augmented in late diabetes. In cavernosal tissue, H2 O2 production was significantly increased in late diabetes. Reactivity for 3-NT was located predominantly in cavernosal smooth muscle (SM) and was significantly reduced in late diabetes. Quantitative immunohistochemistry revealed a significant decrease in eNOS levels in cavernosal SM and endothelium in late diabetes.. The findings indicate that the noxious effects of oxidative stress are more prominent in late diabetes. Increased penile protein oxidative modifications and decreased eNOS expression may be responsible for structural and/or functional deregulation, contributing to the progression of diabetes-associated ED.

    Topics: Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Disease Progression; Endothelium, Vascular; Erectile Dysfunction; Fluorescent Antibody Technique; Immunoblotting; Male; Myocytes, Smooth Muscle; Nitric Oxide Synthase Type III; Oxidative Stress; Penis; Rats; Rats, Wistar; Tyrosine

2015