3-nitrotyrosine has been researched along with Diabetes-Mellitus--Type-2* in 74 studies
13 trial(s) available for 3-nitrotyrosine and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Decreased carotid atherosclerotic process by control of daily acute glucose fluctuations in diabetic patients treated by DPP-IV inhibitors.
Blood glucose fluctuations have been found to be relevant to the progression of atherosclerosis in patients with type 2 diabetes and to be more detrimental for the development of atherosclerosis than the sustained hyperglycemia. We aim at evaluating the effect of blunted daily acute glucose fluctuations by DPP-IV inhibitors on intima-media thickness (IMT), a surrogate marker for early atherosclerosis.. Data from a 12-week prospective, randomized, open-label parallel group trial with a blinded-endopoint study on 90 patients with DMT2, assessing the role of Dipeptidyl Peptidase-4 inhibition in lowering oxidative stress and inflammation by reducing daily acute glucose fluctuations (MAGE), were included in the present analysis.. Administration of both sitagliptin and vildagliptin treatment resulted in a significant decline in IMT. Indeed, vs baseline data Vildagliptin vs Sitagliptin resulted in a greater IMT reduction. After 3 months therapy changes in IMT significantly correlated with changes in MAGE but not with change in HbA1c in the whole population. Only change in MAGE and LDL plasma levels resulted to be independent predictors of the reduced carotid intima-media thickness after adjusting for conventional cardiovascular risk factors in patients with type 2 diabetes. Significant correlations between change in MAGE, change in IMT and change in fasting and interprandial inflammation score and nitrotyrosine plasma levels were found.. Reduction of glucose excursion due to DPP-IV inhibitors administration, may prevent atherosclerosis progression in patients with type 2 diabetes probably through the reduction of daily inflammation and oxidative stress. Topics: Adamantane; Atherosclerosis; Blood Glucose; Carotid Arteries; Carotid Artery Diseases; Carotid Intima-Media Thickness; Cytokines; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Glycated Hemoglobin; Humans; Inflammation; Nitriles; Oxidative Stress; Prospective Studies; Pyrazines; Pyrrolidines; Sitagliptin Phosphate; Triazoles; Tyrosine; Vildagliptin | 2013 |
Effect of Irbesartan treatment on plasma and urinary markers of protein damage in patients with type 2 diabetes and microalbuminuria.
The aim of this study was to assess the effect of the angiotensin II receptor blocker Irbesartan on protein damage by glycation, oxidation and nitration in patients with type 2 diabetes and microalbuminuria. In a double-masked randomised crossover trial of 52 hypertensive type 2 diabetic patients, antihypertensive treatment was replaced with bendroflumethiazide. After 2-months wash-out, patients were treated randomly with Irbesartan 300, 600, and 900 mg o.d., each dose for 2 months in a three-way crossover study. Glycation, oxidation and nitration adduct residues in plasma protein and related urinary free adducts were determined by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. Treatment with Irbesartan decreased urinary excretion of advanced glycation endproducts (AGEs)--methylglyoxal- and glyoxal-derived hydroimidazolones, MG-H1 and G-H1. Urinary AGEs were decreased by 30-32%. In plasma protein, treatment with Irbesartan increased content of glycation adducts Nε-fructosyl-lysine, AGEs Nε-carboxymethyl-lysine, Nε-carboxyethyl-lysine and pentosidine, and also increased content of oxidation markers N-formylkynurenine and dityrosine. This was attributed to decreased clearance of plasma protein modified by Nε-fructosyl-lysine and oxidative markers through the glomerular filter tightened by Irbesartan treatment. Treatment of patients with type 2 diabetes with Irbesartan decreased urinary excretion of MG-H1, G-H1 and 3-NT, which may result from decreased exposure to these AGEs. This is likely achieved by blocking angiotensin II signalling and related down-regulation of glyoxalase 1 and may contribute to health benefits of Irbesartan therapy. Topics: Albuminuria; Amino Acids; Angiotensin II Type 1 Receptor Blockers; Antihypertensive Agents; Bendroflumethiazide; Biomarkers; Biphenyl Compounds; Cross-Over Studies; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dose-Response Relationship, Drug; Female; Glycation End Products, Advanced; Glycosylation; Humans; Hypertension; Irbesartan; Male; Oxidative Stress; Tetrazoles; Tyrosine | 2012 |
Effect of a fatty meal on inflammatory markers in healthy volunteers with a family history of type 2 diabetes.
A family history of type 2 diabetes (T2D) confers a high risk of developing the disease, independent of that due to other common risk factors. Postprandial state is a pro-inflammatory condition associated with a transiently impaired endothelial function; an increased oxidative stress is considered as a mediator of such effects in T2D. We evaluated the short-term effect of a lipid meal on markers of early vascular damage in subjects at risk of developing T2D. A total of thirty-two healthy volunteers, divided according to the presence (FHD+) or absence (FHD - ) of a family history of T2D, underwent a fatty meal test. We measured the monocyte mRNA expressions of IL-6, IL-8 and IL-1β, and IL-6, soluble CD40 ligand (sCD40L), vascular cellular adhesion molecule-1 (VCAM-1), intracellular adhesion molecule-1 (ICAM-1) and nitrotyrosine plasma concentrations at baseline and in the post-meal phase, relating them to the lipid profile and other biochemical parameters. The basal expression of the cytokines did not differ in FHD - and FHD+ subjects; neither was it modified by the meal ingestion. IL-6 and sCD40L plasma levels, similar in the two groups in the fasting state, did not vary after the meal. VCAM-1 and ICAM-1 increased in FHD+ subjects but not in FHD - subjects. Nitrotyrosine, similar between the FHD - and FHD+ subjects at baseline, increased more in FHD+ subjects than in FHD - subjects after the meal. In conclusion, the presence of a familial history of T2D confers an abnormal endothelial activation after an oral lipid meal, coupled with an increased oxidative stress, supporting the hypothesis of an early endothelial dysfunction already present in healthy individuals prone to develop T2D. Topics: Biomarkers; Case-Control Studies; CD40 Ligand; Cytokines; Diabetes Mellitus, Type 2; Dietary Fats; Endothelium, Vascular; Family; Fasting; Genetic Predisposition to Disease; Humans; Inflammation Mediators; Intercellular Adhesion Molecule-1; Lipids; Postprandial Period; Reference Values; Risk Factors; RNA, Messenger; Tyrosine; Vascular Cell Adhesion Molecule-1 | 2011 |
Reduction of circulating superoxide dismutase activity in type 2 diabetic patients with microalbuminuria and its modulation by telmisartan therapy.
Growing evidence indicates that oxidative stress induced by excessive superoxide has a central role in the pathogenesis of diabetic nephropathy (DN). Telmisartan, one of the currently available angiotensin II type 1 receptor blockers (ARBs), has been shown to exert a more powerful proteinuria (albuminuria) reduction in patients with DN, but whether the prominent renoprotective effect of telmisartan is mediated through enhancing antioxidant defense capacity and reducing oxidative stress has not been fully elucidated. The present study first revealed that the serum activity of superoxide dismutase (SOD) responsible for superoxide removal is reduced in the DN stage of microalbuminuria, but not in normoalbuminuria in type 2 diabetic patients. We next examined the alteration of SOD and oxidative stress following an 8-week treatment with telmisartan (40 mg per day) in 12 type 2 diabetic patients with microalbuminuria. Interestingly, the telmisartan treatment not only reduced the circulating levels of two oxidative stress markers, 8-hydroxy-2'-deoxyguanosine (8-OHdG) and nitrotyrosine (NT), but also enhanced serum SOD activity. Notably, a significant correlation was observed between the increase in serum SOD activity and the reduction in albuminuria. We further compared the anti-oxidative effect of telmisartan with that of losartan, another member of the ARB class, by implementing an 8-week interval crossover treatment with these ARBs in another 12 microalbuminuric type 2 diabetic patients. The patients showed higher serum SOD activity, and lower circulating levels of 8-OHdG and NT, during treatment with telmisartan than with losartan. These results suggest that telmisartan has a more potent antioxidative effect through its ability to enhance SOD activity in type 2 diabetic patients with microalbuminuria. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Albuminuria; Angiotensin II Type 1 Receptor Blockers; Antioxidants; Benzimidazoles; Benzoates; Cross-Over Studies; Deoxyguanosine; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Female; Humans; Japan; Losartan; Male; Middle Aged; Nitric Oxide; Oxidative Stress; Superoxide Dismutase; Telmisartan; Tyrosine | 2011 |
Postprandial vascular effects of VIAject compared with insulin lispro and regular human insulin in patients with type 2 diabetes.
Recent studies suggested an impact of prandial insulin delivery on postprandial regulation of tissue blood flow. This study compared the effect of VIAject with human regular insulin and insulin lispro on postprandial oxidative stress and endothelial function in patients with type 2 diabetes.. Fourteen patients (seven men; aged 61.5 +/- 1.8 years; duration of diabetes 6.6 +/- 4.6 years; A1C 7.2 +/- 0.5% [mean +/- SEM]) received a prandial injection of VIAject, human regular insulin, and insulin lispro. At baseline and after a standardized liquid meal test (Ensure Plus), the postprandial increases in asymmetric dimethylarginine (ADMA) and nitrotyrosine levels were investigated. In addition, the postprandial effects on microvascular blood flow, skin oxygenation, and vascular elasticity were measured.. Treatment with VIAject resulted in a significant reduction in the peak postprandial generation of ADMA compared with human insulin and insulin lispro (VIAject -27.3 +/- 22.6, human insulin 97.7 +/- 24.4, and insulin lispro 66.9 +/- 33.9 nmol/l; P < 0.05, respectively). The postprandial increases in nitrotyrosine levels were significantly less after VIAject than after human regular insulin (VIAject -0.22 +/- 0.17 vs. human insulin 0.25 +/- 0.15 microg/ml; P < 0.05), whereas nitrotyrosine after insulin lispro was in between (insulin lispro 0.09 +/- 0.07 microg/ml; NS). In parallel, earlier and more pronounced increases in microvascular blood flow and skin oxygenation were obtained after VIAject compared with those after human insulin or insulin lispro (P < 0.05, respectively). All insulin formulations resulted in comparable improvements in central arterial elasticity. CONCLUSIONS; Treatment with VIAject reduced postprandial oxidative stress and improved endothelial function compared with human regular insulin or insulin lispro. Topics: Arginine; Blood Glucose; Blood Vessels; Diabetes Mellitus, Type 2; Female; Humans; Hypoglycemic Agents; Injections, Subcutaneous; Insulin; Insulin Lispro; Male; Microcirculation; Middle Aged; Postprandial Period; Tyrosine | 2010 |
Impact of rosiglitazone and glyburide on nitrosative stress and myocardial blood flow regulation in type 2 diabetes mellitus.
Cardiovascular disease, the leading cause of death in patients with type 2 diabetes mellitus (T2DM), is usually preceded by endothelial dysfunction and altered myocardial blood flow (MBF) regulation. Hyperglycemia, oxidative-nitrosative stress, systemic inflammation, and insulin resistance are implicated in the pathogenesis of abnormal MBF regulation, myocardial ischemia, and apoptosis. However, the impact of oral antihyperglycemic therapy on myocardial perfusion is controversial. Our objective was to explore the effect of rosiglitazone and glyburide on nitrosative stress and MBF regulation in subjects with T2DM. [(13)N]ammonia positron emission tomography and cold pressor testing were used in 27 diabetic subjects (mean age, 49 +/- 11 years; glycohemoglobin, 7% +/- 1.5%) randomized to either rosiglitazone 8 mg/d or glyburide 10 mg/d for 6 months. Isotope dilution gas chromatography-mass spectrometry was used to quantify plasma 3-nitrotyrosine, a stable marker of reactive nitrogen species. At 6 months, there were no significant differences between groups in the mean glycohemoglobin, blood pressure, or plasma lipids. Rosiglitazone significantly reduced plasma nitrotyrosine, high-sensitivity C-reactive protein, and von Willebrand antigen (P < .03 for all) and significantly increased plasma adiponectin (P < .05). No significant changes in these parameters were observed with glyburide. Treatment with glyburide, but not rosiglitazone, resulted in a significant deterioration in both resting and stress MBF. Rosiglitazone, but not glyburide, ameliorated markers of nitrosative stress and inflammation in subjects with T2DM without impairing myocardial perfusion. Topics: Adiponectin; Adult; Blood Glucose; C-Reactive Protein; Cohort Studies; Coronary Vessels; Diabetes Mellitus, Type 2; Endothelium, Vascular; Female; Glyburide; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Lipid Metabolism; Male; Middle Aged; Myocardium; Positron-Emission Tomography; Reactive Nitrogen Species; Rosiglitazone; Thiazolidinediones; Tyrosine; von Willebrand Factor | 2009 |
Pramlintide reduced markers of oxidative stress in the postprandial period in patients with type 2 diabetes.
The production of oxidative stress as a result of postprandial hyperglycaemia is now recognized as an important contributing factor in the development of diabetes complications. The objective of this study was to examine the effects of pramlintide on plasma concentrations of glucose and several markers of oxidative stress in patients with type 2 diabetes following a standardized meal.. This was a randomized, single-blind, placebo-controlled, crossover study conducted at two clinical research centres in the United States. A total of 19 subjects (9 men and 10 women) with type 2 diabetes using mealtime insulin participated in the study. Pramlintide (120 microg), or placebo, and rapid-acting mealtime insulin were administered prior to a standardized meal on two separate study days. Plasma concentrations of glucose, nitrotyrosine (NT), oxidized-LDL cholesterol (OxLDL-C), and total radical trapping parameter (TRAP) were assessed during the 4-h postprandial period.. Compared to placebo, pramlintide treatment reduced postprandial excursions of glucose, NT, and OxLDL-C and protected TRAP from consumption. Correlation analysis revealed positive associations between placebo-corrected glucose incremental AUC(0-4 h) and both NT and OxLDL-C and a negative association between placebo-corrected glucose incremental AUC(0-4h) and TRAP.. The reduction in postprandial glucose excursions achieved with addition of pramlintide to rapid-acting insulin in type 2 diabetes was associated with a reduction in postprandial markers of oxidative stress. Topics: Adolescent; Adult; Amyloid; Biomarkers; Blood Glucose; Cholesterol, LDL; Diabetes Mellitus, Type 2; Female; Humans; Insulin; Insulin Lispro; Islet Amyloid Polypeptide; Male; Middle Aged; Oxidative Stress; Postprandial Period; Single-Blind Method; Tyrosine | 2008 |
Effect of insulin glulisine on microvascular blood flow and endothelial function in the postprandial state.
To investigate the effect of insulin glulisine on postprandial microvascular blood flow in type 2 diabetes.. A total of 15 patients with type 2 diabetes received insulin glulisine or human insulin before a liquid meal test. Thereafter, skin microvascular blood flow was measured by laser Doppler fluxmetry and blood samples were taken for measurement of plasma levels of glucose, insulin, intact proinsulin, asymmetric dimethylarginine, nitrotyrosine, interleukin-18, matrix metalloproteinase-9, oxidized LDL, and free fatty acids.. Insulin glulisine injections resulted in higher postprandial insulin levels (means +/- SEM area under the curve [AUC](0-120) 51.0 +/- 6.8 vs. 38.2 +/- 5.4 mU/l; P = 0.004), while plasma glucose (AUC(0-240) 158 +/- 9 vs. 180 +/- 9 mg/dl; P < 0.05) and intact proinsulin (AUC(0-240) 26.2 +/- 3.5 vs. 31.2 +/- 4.3 pmol/l; P = 0.002) were lower. Microvascular blood flow increased after insulin glulisine injection (27.9 +/- 3.1 to 51.7 +/- 9.9 arbitrary units [AU]; P < 0.05), while only a minor increase was found during human insulin (27.9 +/- 3.1 to 34.4 +/- 7.8 AU; not significant). Asymmetric dimethylarginine and nitrotyrosine levels were reduced after insulin glulisine (P < 0.05).. Insulin glulisine is superior to human insulin in restoring postprandial metabolic and microvascular physiology. Topics: Adult; Aged; Blood Flow Velocity; Cross-Over Studies; Diabetes Mellitus, Type 2; Endothelium, Vascular; Female; Humans; Hypoglycemic Agents; Insulin; Laser-Doppler Flowmetry; Male; Microcirculation; Middle Aged; Patient Selection; Postprandial Period; Proinsulin; Tyrosine | 2008 |
Effects of pioglitazone vs glibenclamide on postprandial increases in glucose and triglyceride levels and on oxidative stress in Japanese patients with type 2 diabetes.
To investigate the relationship between insulin resistance, postprandial hyperglycemia, postprandial hyperlipidemia, and oxidative stress in type 2 diabetes, changes in postprandial glucose, triglyceride, and nitrotyrosine levels vs baseline after diet loading were examined in type 2 diabetic patients given pioglitazone (PG) or glibenclamide (GB). Twenty-four outpatients with type 2 diabetes treated with oral PG for 6 mo (BMI, 26.3 +/- 0.9; HbA1c, 8.2 +/- 0.2%) and 10 type 2 diabetic patients treated with GB (BMI, 27.4 +/- 1.6; HbA1c, 8.1 +/- 0.2%) at our institutions were compared. These patients were given meal tolerance tests (MTT; each consisting of energy 400 kcal, protein 8.7 g, fat 22.4 g, carbohydrate 41 g) before and 6 mo after administration of either agent. PG produced a significant decrease in FPG, HbA1c, HOMA-R, and TG levels in the subjects compared to baseline. In contrast, GB significantly decreased FPG and HbA1c levels, while not affecting HOMA-R and TG values. While PG produced a significant increase in LPL, HDL-cholesterol, and adiponectin levels, GB did not affect these values. At MTT 6 mo after PG administration, insulin levels before and 4 h after MTT, free fatty acid (FFA) levels 1, 2, and 4 h after MTT, glucose, TG, and RLP-TG levels before and 1, 2, 4, and 6 h after MTT were significantly decreased compared to baseline. At MTT 6 mo after GB administration, while a significant decrease in fasting and 2 h, postprandial glucose values compared to baseline MTT levels was observed, fasting and postprandial TG and RLP-TG levels remained unchanged compared to baseline. After 6 mo of PG and GB administration, serum nitrotyrosine levels before and after MTT were significantly decreased compared to baseline in both groups, while the decrease in nitrotyrosine levels before and after MTT was more marked in the subjects given PG. Our study results suggest that PG suppresses increases in postprandial glucose and TG levels, and improves insulin resistance; and, in addition, that PG may have a favorable impact on oxidative stress in type 2 diabetic patients. Topics: Aged; Blood Glucose; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Fatty Acids, Nonesterified; Female; Glyburide; Glycated Hemoglobin; Humans; Hyperglycemia; Hyperlipidemias; Hypoglycemic Agents; Insulin; Insulin Resistance; Lipoprotein Lipase; Male; Middle Aged; Oxidative Stress; Pioglitazone; Postprandial Period; Thiazolidinediones; Time Factors; Triglycerides; Tyrosine | 2006 |
Effect of moderate red wine intake on cardiac prognosis after recent acute myocardial infarction of subjects with Type 2 diabetes mellitus.
Oxidative stress and increased inflammation have been reported to be increased in subjects with diabetes and to be involved in the pathogenesis of cardiovascular complications after myocardial infarction (MI). It is well recognized that red wine has antioxidant and anti-inflammatory activities. We examined the effects of moderate red wine intake on echocardiographic parameters of functional cardiac outcome in addition to inflammatory cytokines and nitrotyrosine (oxidative stress marker), in subjects with diabetes after a first uncomplicated MI.. One hundred and fifteen subjects with diabetes who had sustained a first non-fatal MI were randomized to receive a moderate daily amount of red wine (intervention group) or not (control group). Echocardiographic parameters of ventricular dys-synchrony, circulating levels of nitrotyrosine, tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-18 (IL-18) and C-reactive protein (CRP) were investigated at baseline and 12 months after randomization.. After 1 year of diet intervention, concentrations of nitrotyrosine (P < 0.01), CRP (P < 0.01), TNF-alpha (P < 0.01), IL-6 (P < 0.01) and IL-18 (P < 0.01) were increased in the control group compared with the intervention group. In addition, myocardial performance index (P < 0.02) was higher, and transmitral Doppler flow (P < 0.05), pulmonary venous flow analysis (P < 0.02) and ejection fraction (P < 0.05) were lower in the control group, indicating ventricular dys-synchrony. The concentrations of nitrotyrosine, CRP, TNF-alpha and IL-6 were related to echocardiographic parameters of ventricular dys-synchrony.. In subjects with diabetes, red wine consumption, taken with meals, significantly reduces oxidative stress and pro-inflammatory cytokines as well as improving cardiac function after MI. Moderate red wine intake with meals may have a beneficial effect in the prevention of cardiovascular complications after MI in subjects with diabetes. Topics: Adult; Aged; C-Reactive Protein; Cardiovascular Diseases; Cytokines; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diet, Mediterranean; Follow-Up Studies; Heart; Humans; Middle Aged; Myocardial Infarction; Oxidative Stress; Prognosis; Treatment Outcome; Tyrosine; Wine | 2006 |
Effect of irbesartan on nitrotyrosine generation in non-hypertensive diabetic patients.
Oxidative stress is involved in the pathogenesis of microangiopathic and macroangiopathic diabetic complications. The results of recent trials suggest that type 1 angiotensin II (AT-1) receptor blockers may prevent or delay nephropathy and cardiovascular disease in diabetic patients, independently of their anti-hypertensive action. There is evidence that AT-1 receptor blockers can work as intracellular antioxidants. This study investigated whether the AT-1 receptor blocker irbesartan is able to reduce nitrotyrosine formation in non-hypertensive diabetic patients under fasting conditions and during acute hyperglycaemia.. A total of 40 non-hypertensive, non-microalbuminuric Type 2 diabetic patients and 20 healthy, normotensive subjects were recruited for this study. Diabetic patients followed a randomised, double-blind, placebo-controlled, crossover protocol, taking either irbesartan (150 mg orally, twice daily) or placebo for 60 days. Fasting glucose and nitrotyrosine were measured at baseline and at the end of each treatment period. An OGTT was also performed at the same time intervals, during which plasma glucose and nitrotyrosine levels were monitored.. Compared with baseline measurements, treatment with irbesartan (0.57+/-0.4 vs 0.35+/-0.3 micromol/l, p<0.01) but not placebo (0.58+/-0.3 vs 0.59+/-0.2 micromol/l) significantly reduced fasting nitrotyrosine levels. Irbesartan also significantly reduced nitrotyrosine formation during the OGTT.. . This study demonstrates that irbesartan reduces plasma levels of nitrotyrosine in diabetic patients and is effective in counterbalancing nitrotyrosine formation during acute hyperglycaemia. Our results may help to elucidate how AT-1 receptor blockers exert their beneficial effect independently of their BP-lowering activity. Topics: Antihypertensive Agents; Biphenyl Compounds; Blood Glucose; Blood Pressure; Cross-Over Studies; Diabetes Mellitus, Type 2; Double-Blind Method; Female; Humans; Irbesartan; Male; Middle Aged; Placebos; Tetrazoles; Tyrosine | 2004 |
Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment.
Postprandial hypertriglyceridemia and hyperglycemia are considered risk factors for cardiovascular disease. Evidence suggests that postprandial hypertriglyceridemia and hyperglycemia induce endothelial dysfunction through oxidative stress; however, the distinct role of these two factors is a matter of debate.. Thirty type 2 diabetic patients and 20 normal subjects ate 3 different meals: a high-fat meal; 75 g glucose alone; and high-fat meal plus glucose. Glycemia, triglyceridemia, nitrotyrosine, and endothelial function were assayed during the tests. Subsequently, diabetics took 40 mg/d simvastatin or placebo for 12 weeks. The 3 tests were performed again at baseline, between 3 to 6 days after the start, and at the end of each study. High-fat load and glucose alone produced a decrease of endothelial function and an increase of nitrotyrosine in normal and diabetic subjects. These effects were more pronounced when high fat and glucose were combined. Short-term simvastatin treatment had no effect on lipid parameters but reduced the effect on endothelial function and nitrotyrosine observed during each different test. Long-term simvastatin treatment was accompanied by a lower increase in postprandial triglycerides, which was followed by smaller variations of endothelial function and nitrotyrosine during the tests.. This study shows an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial function, suggesting oxidative stress as common mediator of such effect. Simvastatin shows a beneficial effect on oxidative stress and endothelial dysfunction, which may be ascribed to a direct effect as well as the lipid-lowering action of the drug. Topics: Blood Glucose; Cardiovascular Diseases; Cross-Over Studies; Diabetes Mellitus, Type 2; Double-Blind Method; Drug Administration Schedule; Endothelium, Vascular; Female; Glucose Tolerance Test; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertriglyceridemia; Male; Middle Aged; Oxidative Stress; Postprandial Period; Risk Factors; Simvastatin; Triglycerides; Tyrosine; Vasodilation | 2002 |
Poly(ADP-Ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity.
We have previously shown that endothelial function is impaired not only in diabetes but also in subjects at risk of developing type 2 diabetes. We hypothesized that changes in the expression or activity of the endothelial isoform of nitric oxide synthase (eNOS), the receptor for advanced glycation end products (RAGE), and poly(ADP-ribose) polymerase (PARP) are related to this impairment.. We included a control group of 21 healthy subjects, a group of 22 healthy individuals with parental history of type 2 diabetes, a group of 23 subjects with impaired glucose tolerance, and a group of 21 type 2 diabetic patients. Two 2-mm forearm skin biopsies were taken from each participant and used for measurements. The percentage of PARP-positive endothelial nuclei was higher in the group with parental history of type 2 diabetes and diabetic patients compared with the controls (P<0.001). Immunoreactivity for nitrotyrosine (a marker of reactive nitrogen species) was higher in the diabetic group compared with all other groups (P<0.01). No differences in the expression of eNOS and RAGE were found among all 4 groups. The polymorphism of the eNOS gene was also studied and was not found to influence eNOS expression or microvascular functional measurements.. PARP activation is present in healthy subjects at risk of developing diabetes as well as in established type 2 diabetic patients, and it is associated with impairments in the vascular reactivity in the skin microcirculation. Topics: Acetylcholine; Biopsy; Cell Nucleus; Diabetes Mellitus, Type 2; Disease Progression; Endothelium, Vascular; Enzyme Activation; Female; Forearm; Humans; Immunohistochemistry; Male; Microcirculation; Middle Aged; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Platelet Endothelial Cell Adhesion Molecule-1; Poly(ADP-ribose) Polymerases; Polymorphism, Genetic; Predictive Value of Tests; Receptor for Advanced Glycation End Products; Receptors, Immunologic; Reference Values; Risk Assessment; Skin; Statistics as Topic; Tyrosine | 2002 |
61 other study(ies) available for 3-nitrotyrosine and Diabetes-Mellitus--Type-2
Article | Year |
---|---|
Oxidative Damage by 3-nitrotyrosine in Young Adults with Obesity: Its Implication in Chronic and Contagious Diseases.
Cellular damage by oxidation occurs in numerous chronic diseases, such as obesity, type II diabetes, cardiovascular disease, nonalcoholic fatty liver, etc. The oxidized compound 3-nitrotyrosine is a marker of oxidative stress and protein oxidation damage.. The article aims to assess whether 3-nitrotyrosine levels are higher in young people with obesity than in the same population without obesity.. Anthropometry and blood chemistry analyses were performed on 24 young Mexican participants (18-30 years old), categorized into two groups based on their waist circumference: Withobesity (≥ 80 cm women; ≥ 90 cm men) and without-obesity (<80 cm women; <90 cm men). Additionally, 3-nitrotyrosine blood values were quantified by ELISA.. Except for HDL-cholesterol, the mean values of lipids increased in women and men with obesity (p<0.05), and 3-nitrotyrosine concentration (nM/μg total protein) was higher by 60% in the group with-obesity compared to the group without-obesity, both for women (66.21 ± 23.85 vs. 40.69 ± 16.25, p<0.05) and men (51.72 ± 20.56 vs. 30.52 ± 5.21, p<0.05).. Oxidative damage measured by compound 3-nitrotyrosine was higher in the group with obesity than in the group without obesity, which, if not controlled, could lead to a chronic oxidative condition and thereby to a degree of cellular aging with adverse health effects. Topics: Adolescent; Adult; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Drug-Related Side Effects and Adverse Reactions; Female; Humans; Male; Obesity; Oxidative Stress; Tyrosine; Young Adult | 2023 |
Luteolin Improves Perivascular Adipose Tissue Profile and Vascular Dysfunction in Goto-Kakizaki Rats.
We investigated the effects of luteolin on metabolism, vascular reactivity, and perivascular adipose tissue (PVAT) in nonobese type 2 diabetes mellitus animal model, Goto-Kakizaki (GK) rats.. Wistar and GK rats were divided in two groups: (1) control groups treated with vehicle; (2) groups treated with luteolin (10 mg/kg/day, for 2 months). Several metabolic parameters such as adiposity index, lipid profile, fasting glucose levels, glucose and insulin tolerance tests were determined. Endothelial function and contraction studies were performed in aortas with (PVAT+) or without (PVAT-) periaortic adipose tissue. We also studied vascular oxidative stress, glycation and assessed CRP, CCL2, and nitrotyrosine levels in PVAT.. Endothelial function was impaired in diabetic GK rats (47% (GK - PVAT) and 65% (GK + PVAT) inhibition of maximal endothelial dependent relaxation) and significantly improved by luteolin treatment (29% (GK - PVAT) and 22% (GK + PVAT) inhibition of maximal endothelial dependent relaxation,. Luteolin ameliorates endothelial dysfunction in type 2 diabetes and exhibits therapeutic potential for the treatment of vascular complications associated with type 2 diabetes. Topics: Adipose Tissue; Animals; Carrier Proteins; Chemokine CCL2; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Drug Administration Schedule; Endothelium, Vascular; Luteolin; Male; Oxidative Stress; Rats; Rats, Wistar; Tyrosine | 2021 |
Maternal serum nitrotyrosine, 8-isoprostane and total antioxidant capacity levels in pre-gestational or gestational diabetes mellitus.
To evaluate serum concentration of 8-isoprostane, nitrotyrosine (NT), and total antioxidant capacity (TAC) in pregnant women with diabetes mellitus (DM) considering preconception planning and method of diabetes correction in 11-14 and 30-34 weeks.. The study included 130 women: T1DM (n = 40), T2DM (n = 35), gestational diabetes (GDM, n = 40) and the control group (n = 15). The serum concentrations of NT, 8-isoprostane, and TAC were measured by ELISA methods.. Elevated 8-isoprostane levels were observed in all patients with DM, but this biomarker's maximum values have been seen in T1DM and T2DM on insulin groups. A similar tendency was observed for the concentration of NT in both the 1st and 3rd trimesters. TAC levels showed a statistically relevant decrease in all DM groups compared to the control. The correlation analysis showed a direct correlation between HbA1c and serum 8-isoprostane levels in the 1st (r = .27) and 3rd (r = .3) pregnancy trimesters as well as inverse correlation with TAC level (r = -.48). Direct (NT, 8-isoprostane) and inverse correlations (TAC) were fixated for this biomarker concentration and preeclampsia rates.. DM in pregnancy is related to oxidative stress activation, which might lead to the development of adverse perinatal outcomes. Topics: Adult; Antioxidants; Case-Control Studies; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Diabetes, Gestational; Dinoprost; Female; Humans; Pre-Eclampsia; Pregnancy; Pregnancy in Diabetics; Pregnancy Outcome; Russia; Tyrosine | 2020 |
Serum Levels of Carbamylated LDL, Nitrotyrosine and Soluble Lectin-like Oxidized Low-density Lipoprotein Receptor-1 in Poorly Controlled Type 2 Diabetes Mellitus.
Carbamylated low-density lipoprotein (cLDL) has profound proatherogenic properties. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been identified as the primary cLDL receptor. The soluble form of LOX-1 (sLOX-1) and 3-nitrotyrosine (NT) have recently been suggested as biomarkers of vascular disease. Although type 2 diabetes mellitus (T2DM) is characterised by an increased atherosclerotic risk, the clinical data on cLDL, NT and sLOX-1 levels in T2DM are limited.. To explore the possible role of cLDL, NT and sLOX-1 as potential biomarkers for disease progression and complications in poorly controlled T2DM patients with and without microalbuminuria.. The serum concentrations of cLDL, NT and sLOX-1 were measured by ELISA in a cross-sectional study of 60 T2DM patients and 35 nondiabetic controls.. Both the normoalbuminuric (n = 34) and the microalbuminuric (n = 26) patients had significantly higher serum levels of cLDL and NT than the healthy controls, but sLOX-1 was only elevated in the microalbuminuric subgroup (p < 0.05). Carbamylated LDL correlated positively with NT in the diabetic subjects (rs = 0.266, p = 0.04) while it correlated with urea only in the control group (rs = 0.475, p = 0.004). The serum concentration of sLOX-1 correlated significantly with fasting glucose (rs = 0.441, p < 0.001), HbA1c (rs = 0.328, p = 0.01) and microalbuminuria (rs = 0.272, p = 0.035) in the whole diabetic cohort.. The present study highlights the potential of cLDL, NT and sLOX-1 as possible markers of diabetic complications. Topics: Adult; Albuminuria; Biomarkers; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Enzyme-Linked Immunosorbent Assay; Female; Humans; Lipoproteins, LDL; Male; Middle Aged; Scavenger Receptors, Class E; Tyrosine | 2019 |
Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate intervention in obese, diabetes-prone mice.
Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N-ε-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions. Topics: Animals; Blood Glucose; Diabetes Mellitus, Type 2; Diet, Carbohydrate-Restricted; Diet, High-Fat; Dietary Carbohydrates; Glycation End Products, Advanced; Hyperglycemia; Insulin; Insulin-Secreting Cells; Islets of Langerhans; Mice; Nitric Oxide Synthase Type II; Obesity; Tyrosine | 2019 |
The two isoforms of matrix metalloproteinase- 2 have distinct renal spatial and temporal distributions in murine models of types 1 and 2 diabetes mellitus.
We recently reported on the enhanced tubular expression of two discrete isoforms of the MMP-2 (full length and N-terminal truncated, FL-MMP-2, NTT-MMP-2) in a murine model and human diabetic kidneys. In the present study, we examined in more detail the temporal and spatial distributions of MMP-2 isoform expression in murine models of Type 1 and Type 2 diabetes mellitus.. Diabetic models were streptozotocin (STZ)-induced diabetes (Type 1 diabetes mellitus) and db/db mice (Type 2 diabetes mellitus). We quantified the abundance of two isoforms of MMP-2 transcripts by qPCR. A spatial distribution of two isoforms of MMP-2 was analyzed semi-quantitatively according to time after injection of STZ and with increasing age of db/db mice. Furthermore, immunohistochemistry for nitrotyrosine was performed to examine a potential association between oxidative stress and MMP-2 isoform expression.. Both isoforms of MMP-2 were upregulated in whole kidneys from STZ and db/db mice. In the case of FL-MMP-2, mRNA levels significantly increased at 12 and 24 weeks in STZ mice, while the isoform expression was significantly increased only at 16 weeks, in the db/db mice. FL-MMP-2 protein levels increased in the cortices and outer medullae of both STZ and db/db mice as a function of the duration of diabetes. For NTT-MMP-2, mRNA levels increased earlier at 4 weeks in STZ mice and at 10 weeks of age in db/db mice. The expression of NTT-MMP-2 also increased, primarily in the cortices of STZ and db/db mice, as a function of the duration of diabetes. Quantitatively, these findings were consistent with the qPCR results in the case of NTT-MMP-2, respectively (STZ 24 weeks, 3.24 ± 3.70 fold; 16 weeks db/db, 4.49 ± 0.55 fold). In addition, nitrotyrosine was expressed primarily in cortex as compared to medulla as a function of the duration of diabetes similar to NTT-MMP-2 expression.. Two isoforms of MMP-2 are highly inducible in two diabetic murine models and become more abundant as a function of time. As the expression patterns were not the same in the two isoforms of MMP-2, it is possible that each isoform has a discrete role in the development of diabetic renal injury. Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Disease Models, Animal; Isoenzymes; Kidney; Kidney Cortex; Kidney Medulla; Kidney Tubules; Male; Matrix Metalloproteinase 2; Mice; Mice, Inbred C57BL; Oxidative Stress; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tyrosine; Up-Regulation | 2018 |
Sitagliptin Protects Cardiac Function by Reducing Nitroxidative Stress and Promoting Autophagy in Zucker Diabetic Fatty (ZDF) Rats.
The purpose of the study is to identify potential mechanisms involved in the cardiac protective effects of sitagliptin in Zucker diabetic fatty (ZDF) rats.. Male non-diabetic lean Zucker rats (Lean) and ZDF rats treated with saline (ZDF) or sitagliptin (ZDF + sita) were used in this study. The blood pressure and lipid profiles were increased significantly in ZDF rats compared with Lean rats. ZDF + sitagliptin rats had decreased systolic blood pressure compared with ZDF rats. Sitagliptin treatment decreased total cholesterol (TC), triglycerides (TGs), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) levels. Ejection fraction (EF) and fractional shortening (FS) were decreased in ZDF rats, which improved with sitagliptin from 59.8% ± 3.0 and 34.5% ± 3.1 to 66.9% ± 3.4 and 40.9% ± 4.2, respectively. Moreover, the nitroxidative stress level was increased while autophagy levels were decreased in ZDF rats, which was reversed by the administration of sitagliptin. Treatment with sitagliptin or FeTMPyP improved the autophagy level in high-glucose cultured H9c2 cells by increasing autolysosome numbers from 15 ± 4 to 21 ± 3 and 22 ± 3, respectively. We detected a positive correlation between DPP-4 activity and 3-nitrotyrosine levels (r = 0.3903; P < 0.01), a negative correlation between Beclin-1 levels and DPP-4 activity (r = - 0.3335; P < 0.01), and a negative correlation between 3-nitrotyrosine and Beclin-1 levels (r = - 0.3794; P < 0.01) in coronary heart disease patients.. Sitagliptin alleviates diabetes-induced cardiac injury by reducing nitroxidative stress and promoting autophagy. This study indicates a novel target pathway for the treatment of cardiovascular complications in type 2 diabetes mellitus. Topics: Animals; Autophagy; Beclin-1; Blood Glucose; Cell Line; Diabetes Mellitus, Type 2; Diabetic Cardiomyopathies; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Disease Models, Animal; Humans; Lipids; Male; Myocytes, Cardiac; Nitrosative Stress; Obesity; Rats, Zucker; Sitagliptin Phosphate; Stroke Volume; Tyrosine; Ventricular Function, Left | 2018 |
MiR-181c restrains nitration stress of endothelial cells in diabetic db/db mice through inhibiting the expression of FoxO1.
Topics: 3' Untranslated Regions; Animals; Aorta, Thoracic; Blotting, Western; Cell Line; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Endothelial Cells; Endothelium, Vascular; Forkhead Box Protein O1; Gene Expression Regulation; Glucose; Male; Mice, Inbred ICR; MicroRNAs; Nitric Oxide Synthase Type II; Nitrosation; Reverse Transcriptase Polymerase Chain Reaction; RNA Interference; Tyrosine; Vasodilation | 2017 |
Association of Plasma DPP4 Activity With Mild Cognitive Impairment in Elderly Patients With Type 2 Diabetes: Results From the GDMD Study in China.
Hyperglycemia, inflammation, and oxidative stress are thought to be involved in the pathogenesis of cognitive decline. Dipeptidyl peptidase-4 (DPP4) is a newly identified adipokine related to these risk factors. Hence, we aimed to investigate the association between plasma DPP4 activities and mild cognitive impairment (MCI) in elderly patients with type 2 diabetes.. We evaluated plasma DPP4 activity, inflammatory markers, and oxidative stress parameters in a cross-sectional sample of 1,160 patients with type 2 diabetes aged 60 years or older in China. MCI was diagnosed based on criteria established by the National Institute on Aging-Alzheimer's Association workgroups. Patients in the highest quartile of DPP4 activity had higher HbA1c, interleukin 6 (IL-6), CRP, nitrotyrosine, 8-iso-PGF2a, and lower Montreal Cognitive Assessment (MoCA) scores compared with subjects in the lowest quartile (P < 0.001). In the highest DPP4 quartile, MCI risk was higher (odds ratio 3.49; 95% CI 1.97-4.57) than in the lowest quartile after adjustment for potential confounders. The risk for MCI increased more with higher levels of DPP4 activity, IL-6, CRP, nitrotyrosine, and 8-iso-PGF2a (P < 0.05), but not with higher levels of HbA1c.. This study shows that increased DPP4 activities are independently associated with MCI in elderly patients with type 2 diabetes. The mechanisms might be partly explained by the effect of DPP4 on inflammation and oxidative stress. These observations raise further interest in DPP4 activity for its potential effect on these MCI-related risk factors as a biological marker or even a possible therapeutic target for MCI. Topics: Aged; Biomarkers; C-Reactive Protein; China; Cognitive Dysfunction; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Dinoprost; Dipeptidyl Peptidase 4; Female; Glycated Hemoglobin; Humans; Inflammation; Interleukin-6; Male; Middle Aged; Odds Ratio; Oxidative Stress; Risk Factors; Tyrosine | 2016 |
Left ventricular pressure-volume measurements and myocardial gene expression profile in type 2 diabetic Goto-Kakizaki rats.
The Goto-Kakizaki (GK) rat, a non-obese model of type 2 diabetes mellitus (T2DM), was generated by the selective inbreeding of glucose-intolerant Wistar rats. This is a convenient model for studying diabetes-induced cardiomyopathy independently from the effects of the metabolic syndrome. We investigated the myocardial functional and structural changes and underlying molecular pathomechanisms of short-term and mild T2DM. The presence of DM was confirmed by an impaired oral glucose tolerance in the GK rats compared with the age-matched nondiabetic Wistar rats. Data from cardiac catheterization showed that in GK rats, although the systolic indexes were not altered, the diastolic stiffness was increased compared with nondiabetics (end-diastolic-pressure-volume-relationship: 0.12 ± 0.04 vs. 0.05 ± 0.01 mmHg/μl, P < 0.05). Additionally, DM was associated with left-ventricular hypertrophy and histological evidence of increased myocardial fibrosis. The plasma pro-B-type natriuretic peptide, the cardiac troponin-T, glucose, and the urinary glucose concentrations were significantly higher in GK rats. Among the 125 genes surveyed using PCR arrays, DM significantly altered the expression of five genes [upregulation of natriuretic peptide precursor-A and connective tissue growth factor, downregulation of c-reactive protein, interleukin-1β, and tumor necrosis factor (TNF)-α mRNA-level]. Of the altered genes, which were evaluated by Western blot, only TNF-α protein expression was significantly decreased. The ECG recordings revealed no significant differences. In conclusion, while systolic dysfunction, myocardial inflammation, and abnormal electrical conduction remain absent, short-term and mild T2DM induce the alteration of cardiac TNF-α at both the mRNA and protein levels. Further assessments are required to reveal if TNF-α plays a role in the early stage of diabetic cardiomyopathy development. Topics: Animals; Apoptosis; Atrial Natriuretic Factor; Blood Glucose; C-Reactive Protein; Connective Tissue Growth Factor; Diabetes Mellitus, Type 2; Down-Regulation; Echocardiography; Electrocardiography; Fibrosis; Glucose Tolerance Test; Glycosuria; Hypertrophy, Left Ventricular; Immunohistochemistry; In Situ Nick-End Labeling; Inflammation; Interleukin-1beta; Male; Myocardium; Natriuretic Peptide, Brain; Oxidative Stress; Peptide Fragments; Polymerase Chain Reaction; Rats; Rats, Wistar; RNA, Messenger; Signal Transduction; Troponin T; Tumor Necrosis Factor-alpha; Tyrosine; Up-Regulation; Ventricular Dysfunction, Left; Ventricular Function, Left; Ventricular Pressure | 2016 |
Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: a pilot study.
Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Animals; Antioxidants; Atrial Remodeling; Cardiomegaly; Cardiovascular System; Case-Control Studies; Cell Line; Deoxyguanosine; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Female; Glucagon-Like Peptide 1; Humans; Male; Mice; Middle Aged; Mitochondria; Myocytes, Cardiac; Oxidative Stress; Palmitic Acid; Pilot Projects; Retrospective Studies; Tyrosine; Ventricular Remodeling | 2015 |
An altered pattern of myocardial histopathological and molecular changes underlies the different characteristics of type-1 and type-2 diabetic cardiac dysfunction.
Increasing evidence suggests that both types of diabetes mellitus (DM) lead to cardiac structural and functional changes. In this study we investigated and compared functional characteristics and underlying subcellular pathological features in rat models of type-1 and type-2 diabetic cardiomyopathy. Type-1 DM was induced by streptozotocin. For type-2 DM, Zucker Diabetic Fatty (ZDF) rats were used. Left ventricular pressure-volume analysis was performed to assess cardiac function. Myocardial nitrotyrosine immunohistochemistry, TUNEL assay, hematoxylin-eosin, and Masson's trichrome staining were performed. mRNA and protein expression were quantified by qRT-PCR and Western blot. Marked systolic dysfunction in type-1 DM was associated with severe nitrooxidative stress, apoptosis, and fibrosis. These pathological features were less pronounced or absent, while cardiomyocyte hypertrophy was comparable in type-2 DM, which was associated with unaltered systolic function and increased diastolic stiffness. mRNA-expression of hypertrophy markers c-fos, c-jun, and β-MHC, as well as pro-apoptotic caspase-12, was elevated in type-1, while it remained unaltered or only slightly increased in type-2 DM. Expression of the profibrotic TGF-β 1 was upregulated in type-1 and showed a decrease in type-2 DM. We compared type-1 and type-2 diabetic cardiomyopathy in standard rat models and described an altered pattern of key pathophysiological features in the diabetic heart and corresponding functional consequences. Topics: Animals; Apoptosis; Diabetes Complications; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Fibrosis; Gene Expression Regulation; Heart; Heart Diseases; Hemodynamics; Immunohistochemistry; In Situ Nick-End Labeling; Male; Myocardium; Oxidative Stress; Rats; Rats, Sprague-Dawley; Rats, Zucker; RNA, Messenger; Transforming Growth Factor beta1; Tyrosine; Ventricular Function, Left | 2015 |
Troponin in diabetic patients with and without chronic coronary artery disease.
Cardiac-specific troponin detected with the new high-sensitivity assays can be chronically elevated in response to cardiovascular comorbidities and confer important prognostic information, in the absence of unstable coronary syndromes. Both diabetes mellitus and coronary artery disease are known predictors of troponin elevation. It is not known whether diabetic patients with coronary artery disease have different levels of troponin compared with diabetic patients with normal coronary arteries. To investigate this question, we determined the concentrations of a level 1 troponin assay in two groups of diabetic patients: those with multivessel coronary artery disease and those with angiographically normal coronary arteries.. We studied 95 diabetic patients and compared troponin in serum samples from 50 patients with coronary artery disease (mean age = 63.7, 58 % male) with 45 controls with angiographically normal coronary arteries. Brain natriuretic peptide and the oxidative stress biomarkers myeloperoxidase, nitrotyrosine and oxidized LDL were also determined.. Diabetic patients with coronary artery disease had higher levels of troponin than did controls (median values, 12.0 pg/mL (95 % CI:10-16) vs 7.0 pg/mL (95 % CI: 5.9-8.5), respectively; p = 0.0001). The area under the ROC curve for the diagnosis of CAD was 0.712 with a sensitivity of 70 % and a specificity of 66 %. Plasma BNP levels and oxidative stress variables (myeloperoxidase, nitrotyrosine, and oxidized LDL) were not different between the two groups. In a multivariate analysis, gender (p = 0.04), serum glucose (0.03) and Troponin I (p = 0.01) had independent statistical significance.. Troponin elevation is related to the presence of chronic coronary artery disease in diabetic patients with multiple associated cardiovascular risk factors. Troponin may serve as a biomarker in this high-risk population.. http://www.controlled-trials.com. ISRCTN26970041. Topics: Aged; Biomarkers; Case-Control Studies; Cholesterol, LDL; Coronary Artery Disease; Diabetes Mellitus, Type 2; Female; Humans; Male; Middle Aged; Natriuretic Peptide, Brain; Oxidation-Reduction; Peroxidase; Risk Factors; Troponin C; Tyrosine | 2015 |
Increased Oxidation as an Additional Mechanism Underlying Reduced Clot Permeability and Impaired Fibrinolysis in Type 2 Diabetes.
We sought to investigate whether enhanced oxidation contributes to unfavorable fibrin clot properties in patients with diabetes.. We assessed plasma fibrin clot permeation (K s , a measure of the pore size in fibrin networks) and clot lysis time induced by recombinant tissue plasminogen activator (CLT) in 163 consecutive type 2 diabetic patients (92 men and 71 women) aged 65 ± 8.8 years with a mean glycated hemoglobin (HbA1c) of 6.8%. We also measured oxidative stress markers, including nitrotyrosine, the soluble form of receptor for advanced glycation end products (sRAGE), 8-iso-prostaglandin F2α (8-iso-PGF2α ), oxidized low-density lipoprotein (oxLDL), and advanced glycation end products (AGE).. There were inverse correlations between K s and nitrotyrosine, sRAGE, 8-iso-PGF2α , and oxLDL. CLT showed a positive correlation with oxLDL and nitrotyrosine but not with other oxidation markers. All these associations remained significant for K s after adjustment for fibrinogen, disease duration, and HbA1c (all P < 0.05), while oxLDL was the only independent predictor of CLT.. Our study shows that enhanced oxidative stress adversely affects plasma fibrin clot properties in type 2 diabetic patients, regardless of disease duration and glycemia control. Topics: Aged; Aged, 80 and over; Blood Coagulation; Blood Glucose; Diabetes Mellitus, Type 2; Dinoprost; Female; Fibrin; Fibrinolysis; Glomerular Filtration Rate; Glycated Hemoglobin; Glycation End Products, Advanced; Humans; Kinetics; Lipoproteins, LDL; Male; Middle Aged; Oxidative Stress; Oxygen; Permeability; Receptor for Advanced Glycation End Products; Recombinant Proteins; Surveys and Questionnaires; Tissue Plasminogen Activator; Tyrosine | 2015 |
Characterization of diabetic neuropathy in the Zucker diabetic Sprague-Dawley rat: a new animal model for type 2 diabetes.
Recently a new rat model for type 2 diabetes the Zucker diabetic Sprague-Dawley (ZDSD/Pco) was created. In this study we sought to characterize the development of diabetic neuropathy in ZDSD rats using age-matched Sprague-Dawley rats as a control. Rats were examined at 34 weeks of age 12 weeks after the onset of hyperglycemia in ZDSD rats. At this time ZDSD rats were severely insulin resistant with slowing of both motor and sensory nerve conduction velocities. ZDSD rats also had fatty livers, elevated serum free fatty acids, triglycerides, and cholesterol, and elevated sciatic nerve nitrotyrosine levels. The corneas of ZDSD rats exhibited a decrease in subbasal epithelial corneal nerves and sensitivity. ZDSD rats were hypoalgesic but intraepidermal nerve fibers in the skin of the hindpaw were normal compared to Sprague-Dawley rats. However, the number of Langerhans cells was decreased. Vascular reactivity of epineurial arterioles, blood vessels that provide circulation to the sciatic nerve, to acetylcholine and calcitonin gene-related peptide was impaired in ZDSD rats. These data indicate that ZDSD rats develop many of the neural complications associated with type 2 diabetes and are a good animal model for preclinical investigations of drug development for diabetic neuropathy. Topics: Age Factors; Animals; Arterioles; Blood Glucose; Cholesterol; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Diabetic Neuropathies; Disease Models, Animal; Fatty Acids, Nonesterified; Fatty Liver; Langerhans Cells; Male; Neural Conduction; Nociception; Rats, Sprague-Dawley; Rats, Zucker; Sciatic Nerve; Time Factors; Triglycerides; Tyrosine; Vasodilation | 2014 |
The effect of high-dose insulin analog initiation therapy on lipid peroxidation products and oxidative stress markers in type 2 diabetic patients.
Effect of high-dose insulin analog initiation therapy was evaluated on lipid peroxidation and oxidative stress markers in type 2 diabetes mellitus (T2DM). Twenty-four T2DM patients with HbA1c levels above 10% despite ongoing therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs. Glycemic profiles were determined over 72 hours by Continuous Glucose Monitoring System (CGMS), and blood/urine samples were collected at 24 and 72 hours. Insulin analog plus metformin treatment significantly reduced glucose variability. Plasma and urine lipid peroxidation were markedly decreased following insulin analog plus metformin treatment. No correlation existed between glucose variability and levels of plasma and urine oxidative stress markers. Likewise, changes in mean blood glucose from baseline to end point showed no significant correlation with changes in markers of oxidative stress. On the contrary, decreased levels of oxidative stress markers following treatment with insulin analogs were significantly correlated with mean blood glucose levels. In conclusion, insulin plus metformin resulted in a significant reduction in oxidative stress markers compared with oral hypoglycemic agents alone. Data from this study suggests that insulin analogs irrespective of changes in blood glucose exert inhibitory effects on free radical formation. Topics: Adult; Aged; Biomarkers; Blood Glucose; Diabetes Mellitus, Type 2; Dinoprost; Drug Therapy, Combination; Female; Glycated Hemoglobin; Humans; Insulin; Lipid Peroxidation; Male; Metformin; Middle Aged; Nitrates; Nitrites; Oxidative Stress; Protein Carbonylation; Sulfonylurea Compounds; Tyrosine | 2013 |
Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes.
Diabetic neuropathy (DN) is the most common complication of diabetes and is characterized by distal-to-proximal loss of peripheral nerve axons. The idea of tissue-specific pathological alterations in energy metabolism in diabetic complications-prone tissues is emerging. Altered nerve metabolism in type 1 diabetes models is observed; however, therapeutic strategies based on these models offer limited efficacy to type 2 diabetic patients with DN. Therefore, understanding how peripheral nerves metabolically adapt to the unique type 2 diabetic environment is critical to develop disease-modifying treatments. In the current study, we utilized targeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) to characterize the glycolytic and tricarboxylic acid (TCA) cycle metabolomes in sural nerve, sciatic nerve, and dorsal root ganglia (DRG) from male type 2 diabetic mice (BKS.Cg-m+/+Lepr(db); db/db) and controls (db/+). We report depletion of glycolytic intermediates in diabetic sural nerve and sciatic nerve (glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate (sural nerve only), 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate, and lactate), with no significant changes in DRG. Citrate and isocitrate TCA cycle intermediates were decreased in sural nerve, sciatic nerve, and DRG from diabetic mice. Utilizing LC/electrospray ionization/MS/MS and HPLC methods, we also observed increased protein and lipid oxidation (nitrotyrosine; hydroxyoctadecadienoic acids) in db/db tissue, with a proximal-to-distal increase in oxidative stress, with associated decreased aconitase enzyme activity. We propose a preliminary model, whereby the greater change in metabolomic profile, increase in oxidative stress, and decrease in TCA cycle enzyme activity may cause distal peripheral nerves to rely on truncated TCA cycle metabolism in the type 2 diabetes environment. Topics: Aconitate Hydratase; Animals; Citric Acid Cycle; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Down-Regulation; Ganglia, Spinal; Glycolysis; Lipid Peroxidation; Male; Mice; Mice, Mutant Strains; Neurons; Oxidative Stress; Peripheral Nervous System; Receptors, Leptin; Sciatic Nerve; Sural Nerve; Tyrosine | 2013 |
The importance of L-arginine metabolism modulation in diabetic patients with distal symmetric polyneuropathy.
Micro and macrovascular disease is the most frequent cause of morbidity and mortality of the patients with diabetes mellitus. The recent investigations have pointed out the relationship between endothelial dysfunction and the progression of these diabetic complications, suggesting the crucial role of nitric oxide, vasodilator molecule of endothelial origin, in these events, including diabetic symmetric polyneuropathy.. The present study encompassed 100 individuals with diabetes mellitus type II and diabetic distal symmetric polyneuropathy (DSP). Nitrate+nitrite concentration, 3-nitrotyrosine, S-nitrosothiols, ADMA and SDMA levels and arginase activity were determined compared to the control group consisted of 50 age and sex matched voluntary blood donors.. NO(2)+NO(3) concentrations, as well as 3-nitrotyrosine, S-nitrosothiol, ADMA and SDMA levels were significantly higher in patients with DSP compared to the control group. Plasma arginase activity in the patients with diabetic DSP was significantly lower compared to the values in plasma of control subjects.. The obtained results confirmed that nitrate+nitrite, 3-nitrotyrosine, S-nitrosothiols, ADMA, SDMA and arginase activity determination in plasma of patients with diabetic DSP could be useful in monitoring the disease development and in assesing the therapy effects. Topics: Aged; Arginase; Arginine; Blood Glucose; Chromatography, High Pressure Liquid; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Electrodiagnosis; Female; Fructosamine; Glycated Hemoglobin; Humans; Male; Methylation; Middle Aged; Nitrates; Nitrites; S-Nitrosothiols; Tyrosine | 2013 |
Phosphorylation of myocardial eNOS is altered in patients suffering from type 2 diabetes.
The present study investigated whether endothelial nitric oxide synthase (eNOS) activation may be dysregulated in cardiac tissue of patients suffering from type 2 diabetes (T2D). We performed immunohistochemical measurements of translocated eNOS activation as well as eNOS phosphorylation at Ser1177, Thr495, Ser 635, Ser114, and of the protein kinase B (Akt) in isolated right atrial trabeculae of patients undergoing cardiac bypass or valve surgery with (n = 12, 68.1 ± 2.5 yr) and without T2D (n = 12, 64.7 ± 2.7 yr). In addition, we investigated oxidative (8-isoprostane) and nitrosative stress markers (nitrotyrosine) as well as the effect of pharmacological stimulation of angiotensin (AT)-receptors on eNOS-phosphorylation. Translocation-dependent eNOS activation was similar in both groups. The same holds true for eNOS phosphorylation at Ser114. eNOS phosphorylation at Ser635 was significantly increased, whereas eNOS phosphorylation of Ser1177 was significantly decreased in the diabetic group paralleled by a decrease in phosphorylation of Akt and Thr495. These alterations were accompanied by a significant decrease in nitrotyrosine. After application of angiotensin II (10 μM, 2 min) for investigation of the AT-receptor-dependent eNOS stimulation, we did not find differences between the increases in eNOS Ser1177-phosphorylation in the nondiabetic (+39.7 ± 23.5%) and in the diabetic group (32.22 ± 11.45%). A simultaneous increase in Akt phosphorylation could not be observed. The present study indicates that T2D goes along with a decrease in eNOS phosphorylation at Ser1177 under basal conditions in cardiac tissue. Whether this may be attributed to the insulin resistance of cardiac muscle has to be further investigated. Receptor-stimulated eNOS activation still works at least for angiotensin II-dependent eNOS activation. Topics: Adult; Aged; Aged, 80 and over; Angiotensin II; Diabetes Mellitus, Type 2; Dinoprost; Humans; Middle Aged; Myocardium; Nitric Oxide Synthase Type III; Oxidative Stress; Phosphorylation; Proto-Oncogene Proteins c-akt; Tyrosine | 2013 |
Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes.
There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25% of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes. Topics: Animals; Antioxidants; Base Sequence; Carrier Proteins; Cell Cycle Proteins; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Supplements; DNA Primers; Erythrocytes; Gene Expression; Glutamine; Glutathione; Kidney; Male; Oxidative Stress; Rats; Rats, Wistar; RNA, Messenger; Tyrosine | 2012 |
Exacerbation of endothelial dysfunction during the progression of diabetes: role of oxidative stress.
To test the deterioration of endothelial function during the progression of diabetes, shear stress-induced dilation (SSID; 10, 20, and 40 dyn/cm(2)) was determined in isolated mesenteric arteries (80-120 μm in diameter) of 6-wk (6W), 3-mo (3M), and 9-mo (9M)-old male db/db mice and their wild-type (WT) controls. Nitric oxide (NO)-mediated SSID was comparable in 6W WT and db/db mice, but the dilation was significantly reduced in 3M db/db mice and declined further in 9M db/db mice. Vascular superoxide production was progressively increased in 3M and 9M db/db mice, associated with an increased expression of NADPH oxidase. Inhibition of NADPH oxidase significantly improved NO-mediated SSID in arteries of 3M, but not in 9M, db/db mice. Although endothelial nitric oxide synthase (eNOS) expression was comparable in all groups, a progressive reduction in shear stress-induced eNOS phosphorylation existed in vessels of 3M and 9M db/db mice. Moreover, inducible NOS (iNOS) that was not detected in WT, nor in 6W and 3M db/db mice, was expressed in vessels of 9M db/db mice. A significantly increased expression of nitrotyrosine in total protein and immunoprecipitated eNOS was also found in vessels of 9M db/db mice. Thus, impaired NO bioavailability plays an essential role in the endothelial dysfunction of diabetic mice, which becomes aggravated when endothelial nitrosative stress is further activated via perhaps, an additional iNOS-mediated pathway during the progression of diabetes. Topics: Animals; Diabetes Mellitus, Type 2; Disease Models, Animal; Disease Progression; Endothelium, Vascular; Hyperglycemia; Hyperinsulinism; Male; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Superoxides; Time Factors; Tyrosine | 2012 |
Postchallenge responses of nitrotyrosine and TNF-alpha during 75-g oral glucose tolerance test are associated with the presence of coronary artery diseases in patients with prediabetes.
Meta-analysis has demonstrated an exponential relationship between 2-hr postchallenge hyperglycemia and coronary artery disease (CAD). Pulsatile hyperglycemia can acutely increase proinflammatory cytokines by oxidative stress. We hypothesized that postchallenge proinflammatory and nitrosative responses after 75 g oral glucose tolerance tests (75 g-OGTT) might be associated with CAD in patients without previously recognized type 2 diabetes mellitus (T2DM).. Serial changes of plasma glucose (PG), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and nitrotyrosine levels were analyzed during 75 g-OGTT in 120 patients (81 male; age 62 ± 11 years) before coronary angiography. Patients were classified as normal (NGT; 42%), impaired (IGT; 34%) and diabetic (T2DM; 24%) glucose tolerance by 75 g-OGTT.. Postchallenge hyperglycemia elicited TNF-α, IL-6 and nitrotyrosine levels time-dependently, and 2-hr median levels of TNF-α (7.1 versus 6.4 pg/ml; P < 0.05) and nitrotyrosine (1.01 versus 0.83 μmol/l; P < 0.05), but not IL-6 or PG, were significantly higher in patients with CAD in either IGT or T2DM groups. After adjusting risk factors and glucose tolerance status, 2-hr nitrotyrosine in highest quartiles (OR: 3.1, P < 0.05) remained an independent predictor of CAD by logistic regression analysis.. These results highlight postchallenge proinflammatory and nitrosative responses by 75 g-OGTT, rather than hyperglycemia per se, are associated with CAD in patients without previous recognized diabetes. Topics: Aged; Biomarkers; Blood Glucose; Coronary Angiography; Coronary Artery Disease; Diabetes Complications; Diabetes Mellitus, Type 2; Female; Glucose Tolerance Test; Humans; Inflammation Mediators; Interleukin-6; Logistic Models; Male; Middle Aged; Odds Ratio; Prediabetic State; Risk Assessment; Risk Factors; Taiwan; Time Factors; Tumor Necrosis Factor-alpha; Tyrosine | 2012 |
Evidence for a role of frataxin in pancreatic islets isolated from multi-organ donors with and without type 2 diabetes mellitus.
Frataxin (FXN) is a mitochondrial protein involved in iron metabolism and in the modulation of reactive oxygen and/or nitrogen species production. No information is currently available as for the role of frataxin in isolated human pancreatic islets. We studied islets from pancreases of multi-organ donors with (T2DM) and without (Ctrl) Type 2 diabetes mellitus. In these islets, we determined FXN gene and protein expression by qualitative and quantitative Real-Time RT-PCR, nitrotyrosine concentration, and insulin release in response to glucose stimulation (SI). FXN gene and protein were expressed in human islets, though the level of expression was much lower in T2DM islets. The latter also had lower insulin release and higher concentration of nitrotyrosine. A positive correlation was apparent between SI and FXN gene expression, while a negative correlation was found between nitrotyrosine islet concentration and FXN expression. Transfection of Ctrl islets with siRNA FXN caused reduction of FXN expression, increase of nitrotyrosine concentration, and reduction of insulin release. In conclusion, in human pancreatic islets FXN contributes to regulation of oxidative stress and insulin release in response to glucose. In islets from T2DM patients FXN expression is reduced while oxidative stress is increased and insulin release in response to glucose impaired. Topics: Diabetes Mellitus, Type 2; Female; Frataxin; Gene Expression Regulation; Humans; Iron-Binding Proteins; Islets of Langerhans; Male; Middle Aged; Regression Analysis; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; Tissue Donors; Tyrosine | 2012 |
Cerebral myogenic reactivity and blood flow in type 2 diabetic rats: role of peroxynitrite in hypoxia-mediated loss of myogenic tone.
Dysregulation of cerebral vascular function and, ultimately, cerebral blood flow (CBF) may contribute to complications such as stroke and cognitive decline in diabetes. We hypothesized that 1) diabetes-mediated neurovascular and myogenic dysfunction impairs CBF and 2) under hypoxic conditions, cerebral vessels from diabetic rats lose myogenic properties because of peroxynitrite (ONOO(-))-mediated nitration of vascular smooth muscle (VSM) actin. Functional hyperemia, the ability of blood vessels to dilate upon neuronal stimulation, and myogenic tone of isolated middle cerebral arteries (MCAs) were assessed as indices of neurovascular and myogenic function, respectively, in 10- to 12-week control and type 2 diabetic Goto-Kakizaki rats. In addition, myogenic behavior of MCAs, nitrotyrosine (NY) levels, and VSM actin content were measured under normoxic and hypoxic [oxygen glucose deprivation (OGD)] conditions with and without the ONOO(-) decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl) prophyrinato iron (III), chloride (FeTPPs). The percentage of myogenic tone was higher in diabetes, and forced dilation occurred at higher pressures. Functional hyperemia was impaired. Consistent with these findings, baseline CBF was lower in diabetes. OGD reduced the percentage of myogenic tone in both groups, and FeTPPs restored it only in diabetes. OGD increased VSM NY in both groups, and although FeTPPs restored basal levels, it did not correct the reduced filamentous/globular (F/G) actin ratio. Acute alterations in VSM ONOO(-) levels may contribute to hypoxic myogenic dysfunction, but this cannot be solely explained by the decreased F/G actin ratio due to actin nitration, and mechanisms may differ between control and diabetic animals. Our findings also demonstrate that diabetes alters the ability of cerebral vessels to regulate CBF under basal and hypoxic conditions. Topics: Actins; Animals; Cell Hypoxia; Cerebrovascular Circulation; Diabetes Mellitus, Type 2; Disease Models, Animal; Hyperemia; Male; Metalloporphyrins; Middle Cerebral Artery; Muscle, Smooth, Vascular; Peroxynitrous Acid; Rats; Rats, Wistar; Tyrosine | 2012 |
Obstructive sleep apnea and diabetic neuropathy: a novel association in patients with type 2 diabetes.
Diabetic peripheral neuropathy is common and causes significant morbidity. Obstructive sleep apnea (OSA) is also common in patients with type 2 diabetes. Because OSA is associated with inflammation and oxidative stress, we hypothesized that OSA is associated with peripheral neuropathy in type 2 diabetes.. To assess the relationship between OSA and peripheral neuropathy in patients with type 2 diabetes.. A cross-sectional study of adults with type 2 diabetes recruited randomly from the diabetes clinic of two UK hospitals.. Peripheral neuropathy was diagnosed using the Michigan Neuropathy Screening Instrument. OSA (apnea-hypopnea index ≥ 5 events/h) was assessed using home-based, multichannel respiratory monitoring. Serum nitrotyrosine was measured by ELISA, lipid peroxide by spectrophotometer, and microvascular function by laser speckle contrast imaging. Two hundred thirty-four patients (mean [SD] age, 57 [12] yr) were analyzed. OSA prevalence was 65% (median apnea-hypopnea index, 7.2; range, 0-93), 40% of which were moderate to severe. Neuropathy prevalence was higher in patients with OSA than those without (60% vs. 27%, P < 0.001). After adjustment for possible confounders, OSA remained independently associated with diabetic neuropathy (odds ratio, 2.82; 95% confidence interval, 1.44-5.52; P = 0.0034). Nitrotyrosine and lipid peroxide levels (n = 102, 74 with OSA) were higher in OSA and correlated with hypoxemia severity. Cutaneous microvascular function (n = 71, 47 with OSA) was impaired in OSA.. We describe a novel independent association between diabetic peripheral neuropathy and OSA. We identified increased nitrosative/oxidative stress and impaired microvascular regulation as potential mechanisms. Prospective and interventional studies are needed to assess the impact of OSA and its treatment on peripheral neuropathy development and progression in patients with type 2 diabetes. Topics: Adult; Aged; Biomarkers; Cross-Sectional Studies; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Female; Humans; Linear Models; Lipid Peroxides; Male; Microcirculation; Middle Aged; Multivariate Analysis; Oxidative Stress; Prevalence; Severity of Illness Index; Skin; Sleep Apnea, Obstructive; Tyrosine | 2012 |
Metanx alleviates multiple manifestations of peripheral neuropathy and increases intraepidermal nerve fiber density in Zucker diabetic fatty rats.
Metanx is a product containing L-methylfolate, pyridoxal 5'-phosphate, and methylcobalamin for management of endothelial dysfunction. Metanx ingredients counteract endothelial nitric oxide synthase uncoupling and oxidative stress in vascular endothelium and peripheral nerve. This study evaluates Metanx on diabetic peripheral neuropathy in ZDF rats, a model of type 2 diabetes. Metanx was administered to 15-week-old ZDF and ZDF lean rats at either 4.87 mg ⋅ kg(-1) ⋅ day(-1) (a body weight-based equivalent of human dose) or 24.35 mg ⋅ kg(-1) ⋅ day(-1) by oral gavage two times a day for 4 weeks. Both doses alleviated hind limb digital sensory, but not sciatic motor, nerve conduction slowing and thermal and mechanical hypoalgesia in the absence of any reduction of hyperglycemia. Low-dose Metanx increased intraepidermal nerve fiber density but did not prevent morphometric changes in distal tibial nerve myelinated fibers. Metanx treatment counteracted endothelial nitric oxide synthase uncoupling, inducible nitric oxide synthase upregulation, and methylglyoxal-derived advanced glycation end product, nitrotyrosine, and nitrite/nitrate accumulation in the peripheral nerve. In conclusion, Metanx, at a body weight-based equivalent of human dose, increased intraepidermal nerve fiber density and improved multiple parameters of peripheral nerve function in ZDF rats. Clinical studies are needed to determine if Metanx finds use in management of diabetic peripheral neuropathy. Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Disease Models, Animal; Folic Acid; Hyperalgesia; Male; Nerve Fibers; Neural Conduction; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Pyridoxal Phosphate; Rats; Rats, Zucker; Sciatic Nerve; Tibial Nerve; Tyrosine; Vitamin B 12 | 2012 |
Increased cellular and circulating biomarkers of oxidative stress in nascent metabolic syndrome.
Metabolic syndrome (MetS) confers a greater risk for both cardiovascular disease (CVD) and diabetes. Oxidative stress (OS) could contribute to this excess risk. However, there are few data examining both cellular and circulating biomarkers of OS in MetS uncomplicated by diabetes and CVD.. The aim of the study was to evaluate both cellular and circulating biomarkers of OS in MetS uncomplicated by diabetes or CVD.. At an academic medical center, we compared MetS (n=43) vs. control subjects (n=33). Fasting blood was collected for monocyte isolation and assay of OS biomarkers.. Monocyte nicotinamide adenine dinucleotide phosphate oxidase activity (p22 phox and p47), superoxide anion release, oxidized-low-density lipoprotein (Ox-LDL), nitrotyrosine, and nuclear factor erythroid 2-related factor were measured.. There was significantly increased release of superoxide from the monocytes (basal and after activation) of MetS compared with controls adjusted for body mass index. Body mass index-adjusted plasma levels of Ox-LDL and nitrotyrosine were significantly increased in MetS. There was a linear trend between biomarkers of oxidative stress and increasing number of features of MetS. Also, there was a significant increase in nicotinamide adenine dinucleotide phosphate oxidase membrane expression of p22 phox and p47 phox in MetS. The major cellular antioxidant defense, nuclear factor erythroid 2-related factor was significantly decreased. There were significant correlations between homeostasis model assessment insulin resistance index and both Ox-LDL and nitrotyrosine and superoxide and Ox-LDL.. Collectively, nascent MetS is associated with increased OS as evidenced by both circulating and cellular biomarkers, and this could contribute to the risk for both diabetes and CVD. Topics: Adult; Biomarkers; Body Mass Index; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Female; Humans; Lipoproteins, LDL; Male; Metabolic Syndrome; Middle Aged; Monocytes; NADPH Oxidases; NF-E2 Transcription Factor; Oxidative Stress; Prevalence; Risk Factors; Superoxides; Tyrosine | 2012 |
Anti-diabetic atherosclerosis effect of Prunella vulgaris in db/db mice with type 2 diabetes.
Diabetes mellitus is the leading cause of vascular complications such as atherosclerosis. This study was designed to investigate whether Prunella vulgaris (APV) would inhibit diabetic atherosclerosis in db/db mice with type 2 diabetes. The db/db mice were treated with high fat/high cholesterol (HFHC) diet and an aqueous extract of APV (100 and 200 mg/kg/day) for eight weeks to examine the long-term effect on metabolic abnormalities and diabetic atherosclerosis. APV treatment markedly lowered blood glucose and systolic blood pressure. The db/db mice experienced an increase in blood urea nitrogen as well as a decrease of creatinine clearance, the latter of which was restored by treatment with APV. Treatment with APV markedly decreased total plasma cholesterol, triglyceride, and LDL-cholesterol and also increased the HDL-cholesterol. In addition, malondialdehyde and TGF-β1 were decreased by treatment of APV. On the other hand, total NO level was decreased in db/db mice. However, the NO level was increased by treatment with APV, suggesting an association with vascular dysfunction. Vascular relaxation of aortic rings by acetylcholine or SNP-inducement was ameliorated by APV in a dose-dependent manner. Damage of vascular intima and hypertrophic of media were observed in db/db mice; however its dysfunction was improved by the treatment of APV. APV treatment significantly reduced the aortic expressions of ICAM-1, VCAM-1, ET-1, and nitrotyrosine. Furthermore, expression of eNOS in aortic was remarkably increased by APV treatment. Taken together, APV suppressed hyperglycemia and diabetic vascular dysfunction in HFHC diet-db/db mice. The present data suggest that Prunella vulgaris may prevent development of diabetic atherosclerosis. Topics: Acetylcholine; Animals; Aorta; Atherosclerosis; Blood Glucose; Blood Pressure; Blood Urea Nitrogen; Cholesterol, Dietary; Creatinine; Diabetes Complications; Diabetes Mellitus, Type 2; Diet, High-Fat; Dose-Response Relationship, Drug; Endothelin-1; Hyperglycemia; Hypertrophy; Hypoglycemic Agents; Intercellular Adhesion Molecule-1; Lipids; Male; Malondialdehyde; Mice; Mice, Inbred Strains; Mice, Knockout; Nitric Oxide; Phytotherapy; Plant Extracts; Prunella; Transforming Growth Factor beta1; Tunica Intima; Tunica Media; Tyrosine; Vascular Cell Adhesion Molecule-1; Vasodilation | 2012 |
Changes in microvascular reactivity after cardiopulmonary bypass in patients with poorly controlled versus controlled diabetes.
We investigated the effects of cardiopulmonary bypass (CPB) on peripheral arteriolar reactivity and associated signaling pathways in poorly controlled (UDM), controlled (CDM), and case-matched nondiabetic (ND) patients undergoing coronary artery bypass grafting (CABG).. Skeletal muscle arterioles were harvested before and after CPB from the UDM patients (hemoglobin A1c [HbA1c]=9.0 ± 0.3), the CDM patients (HbA1c=6.3 ± 0.15), and the ND patients (HbA1c=5.2 ± 0.1) undergoing CABG surgery (n=10/group). In vitro relaxation responses of precontracted arterioles to endothelium-dependent vasodilators adenosine 5'-diphosphate (ADP) and substance P and the endothelium-independent vasodilator sodium nitroprusside (SNP) were examined. The baseline responses to ADP, substance P, and SNP of arterioles from the UDM patients were decreased as compared with microvessels from the ND or CDM patients (P<0.05). The post-CPB relaxation responses to ADP and substance P were significantly decreased in all 3 groups compared with pre-CPB responses (P<0.05). However, these decreases were more pronounced in the UDM group (P<0.05). The post-CPB response to SNP was significantly decreased only in the UDM group, not in the other 2 groups compared with pre-CPB. The expression of protein kinase C (PKC)-α, PKC-β, protein oxidation, and nitrotyrosine in the skeletal muscle were significantly increased in the UDM group as compared with those of ND or CDM groups (P<0.05).. Poorly controlled diabetes results in impaired arteriolar function before and after CPB. These alterations are associated with the increased expression/activation of PKC-α and PKC-β and enhanced oxidative and nitrosative stress. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Adenosine Diphosphate; Aged; Arterioles; Cardiopulmonary Bypass; Coronary Artery Bypass; Cyclic AMP-Dependent Protein Kinases; Diabetes Mellitus, Type 2; Disease Susceptibility; Endothelium, Vascular; Enzyme Induction; Female; Gene Expression Regulation; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Inflammation; Male; Microcirculation; Middle Aged; Muscle, Skeletal; Nitroprusside; Phosphorylation; Protein Processing, Post-Translational; Proto-Oncogene Proteins c-akt; Substance P; Tyrosine; Vasoconstriction; Vasodilator Agents | 2012 |
Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement.
Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress. Topics: Adolescent; Adult; Aged; Base Sequence; Brachial Artery; Case-Control Studies; Deafness; Diabetes Mellitus, Type 2; Endothelium, Vascular; Female; Femoral Artery; Humans; Kearns-Sayre Syndrome; Male; MELAS Syndrome; MERRF Syndrome; Middle Aged; Mitochondrial Diseases; Muscle, Skeletal; Muscle, Smooth, Vascular; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Point Mutation; Sequence Deletion; Tyrosine; Vasodilation | 2011 |
Diabetic Retinopathy Is Associated with Decreased Tyrosine Nitrosylation of Vitreous Interleukins IL-1α, IL-1β, and IL-7.
To simultaneously evaluate tyrosine nitrosylation and phosphorylation levels of vitreous interleukins of patients with diabetic retinopathy, in which abnormal tyrosine phosphorylation has been previously described.. Specific immunoprecipitation of interleukins IL-1α, IL-1β, IL-2 and IL-7 was carried out in samples obtained during vitrectomy performed for proliferative diabetic retinopathy in patients (n=12) and for macular hole in controls (n=12). Tyrosine nitrosylation and phosphorylation levels of the immunoprecipitated interleukins were analysed by Western blot with the respective specific antibodies and correlated. The results were also correlated with the total amount of immunoprecipitated interleukin protein. The mean phosphorylation/nitrosylation ratios of these proteins in vitreous humour of both the control group and diabetic patients were determined.. Diabetes was associated with decreased tyrosine nitrosylation of IL-1α, IL-1β and IL-7 and an increased tyrosine phosphorylation/nitrosylation ratio with respect to controls in IL-1α (1.58±0.22 vs. 2.74±0.39, respectively; p<0.05) and IL-7 (2.15±0.01 vs. 3.26±0.57, respectively; p<0.05). No significant changes were observed in nitrotyrosine or in the tyrosine phosphorylation/nitrosylation ratio of IL-2.. Proliferative diabetic retinopathy is associated with concomitant and simultaneous changes in both tyrosine phosphorylation and tyrosine nitrosylation status of specific pro-inflammatory interleukins present in the vitreous fluid such as IL-1α, IL-1β and IL-7. These changes could be related to the increase in pro-inflammatory activity detected in diabetes-induced retinopathy. Topics: Aged; Blood Glucose; Blotting, Western; Chromatography, High Pressure Liquid; Diabetes Mellitus, Type 2; Diabetic Retinopathy; Female; Glycated Hemoglobin; Humans; Immunoprecipitation; Interleukin-1alpha; Interleukin-1beta; Interleukin-7; Male; Middle Aged; Nitric Oxide; Phosphorylation; Phosphotyrosine; Tyrosine; Vitreous Body | 2011 |
Dynamic evaluation of renal resistive index in normoalbuminuric patients with newly diagnosed hypertension or type 2 diabetes.
Renal resistive index is a useful measure for quantifying alterations in renal blood flow. In the present study we evaluated resistive index at baseline and after vasodilation induced by nitroglycerine in normoalbuminuric patients with type 2 diabetes or essential hypertension, relating the values to indices of systemic vascular dysfunction.. Newly diagnosed treatment-naïve type 2 diabetic (n = 32) and hypertensive patients (n = 49) were compared with 27 age- and sex-matched healthy controls. Renal resistive index was obtained by duplex ultrasound at baseline and after 25 μg sublingual nitroglycerine. Endothelium-dependent (flow-mediated dilation) and -independent (response to nitroglycerine) vasodilation in the brachial artery was assessed by computerised edge detection system. Carotid-femoral pulse-wave velocity and augmentation index were assessed by applanation tonometry. Nitrotyrosine levels, an index of oxidative stress, were also measured.. Resistive index was higher in diabetic than in hypertensive patients and controls (p < 0.001), while changes in resistive index induced by nitroglycerine were lower in hypertensive patients compared with controls (p < 0.01), and were further reduced in type 2 diabetic patients. Hypertensive and diabetic patients showed significantly increased arterial stiffness, nitrotyrosine levels and reduced endothelial function than controls (p < 0.05). Changes in resistive index induced by nitroglycerine were independently related to serum glucose, reactive hyperaemia and aortic pulse-wave velocity in the overall population.. These results support the dynamic evaluation of renal resistive index as an early detector of renal vascular alterations in the presence of type 2 diabetes and hypertension, even before the onset of microalbuminuria. Topics: Adult; Albuminuria; Blood Glucose; Case-Control Studies; Comorbidity; Diabetes Mellitus, Type 2; Female; Humans; Hypertension; Kidney; Male; Middle Aged; Nitroglycerin; Oxidative Stress; Regional Blood Flow; Tyrosine; Ultrasonography; Vasodilation; Vasodilator Agents | 2011 |
Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice.
Type 2 diabetes (T2D) is a leading risk factor for a variety of cardiovascular diseases including coronary heart disease and atherosclerosis. Exercise training (ET) has a beneficial effect on these disorders, but the basis for this effect is not fully understood. This study was designed to investigate whether the ET abates endothelial dysfunction in the aorta in T2D. Heterozygous controls (m Lepr(db)) and type 2 diabetic mice (db/db; Lepr(db)) were either exercise entrained by forced treadmill exercise or remained sedentary for 10 wk. Ex vivo functional assessment of aortic rings showed that ET restored acetylcholine-induced endothelial-dependent vasodilation of diabetic mice. Although the protein expression of endothelial nitric oxide synthase did not increase, ET reduced both IFN-γ and superoxide production by inhibiting gp91(phox) protein levels. In addition, ET increased the expression of adiponectin (APN) and the antioxidant enzyme, SOD-1. To investigate whether these beneficial effects of ET are APN dependent, we used adiponectin knockout (APNKO) mice. Indeed, impaired endothelial-dependent vasodilation occurred in APNKO mice, suggesting that APN plays a central role in prevention of endothelial dysfunction. APNKO mice also showed increased protein expression of IFN-γ, gp91(phox), and nitrotyrosine but protein expression of SOD-1 and -3 were comparable between wild-type and APNKO. These findings in the aorta imply that APN suppresses inflammation and oxidative stress in the aorta, but not SOD-1 and -3. Thus ET improves endothelial function in the aorta in T2D via both APN-dependent and independent pathways. This improvement is due to the effects of ET in inhibiting inflammation and oxidative stress (APN-dependent) as well as in improving antioxidant enzyme (APN-independent) performance in T2D. Topics: Adiponectin; Analysis of Variance; Animals; Aorta; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Inflammation Mediators; Interferon-gamma; Male; Membrane Glycoproteins; Mice; Mice, Inbred C57BL; Mice, Knockout; NADPH Oxidase 2; NADPH Oxidases; Nitric Oxide; Oxidative Stress; Physical Exertion; Signal Transduction; Superoxide Dismutase; Superoxide Dismutase-1; Superoxides; Time Factors; Tyrosine; Vasodilation; Vasodilator Agents | 2011 |
Distinct cardiac and renal effects of ETA receptor antagonist and ACE inhibitor in experimental type 2 diabetes.
Diabetic nephropathy is associated with cardiovascular morbidity. Angiotensin-converting enzyme (ACE) inhibitors provide imperfect renoprotection in advanced type 2 diabetes, and cardiovascular risk remains elevated. Endothelin (ET)-1 has a role in renal and cardiac dysfunction in diabetes. Here, we assessed whether combination therapy with an ACE inhibitor and ET(A) receptor antagonist provided reno- and cardioprotection in rats with overt type 2 diabetes. Four groups of Zucker diabetic fatty (ZDF) rats were treated orally from 4 (when proteinuric) to 8 mo with vehicle, ramipril (1 mg/kg), sitaxsentan (60 mg/kg), and ramipril plus sitaxsentan. Lean rats served as controls. Combined therapy ameliorated proteinuria and glomerulosclerosis mostly as a result of the action of ramipril. Simultaneous blockade of ANG II and ET-1 pathways normalized renal monocyte chemoattractant protein-1 and interstitial inflammation. Cardiomyocyte loss, volume enlargement, and capillary rarefaction were prominent abnormalities of ZDF myocardium. Myocyte volume was reduced by ramipril and sitaxsentan, which also ameliorated heart capillary density. Drug combination restored myocardial structure and reestablished an adequate capillary network in the presence of increased cardiac expression of VEGF/VEGFR-1, and significant reduction of oxidative stress. In conclusion, in type 2 diabetes concomitant blockade of ANG II synthesis and ET-1 biological activity through an ET(A) receptor antagonist led to substantial albeit not complete renoprotection, almost due to the ACE inhibitor. The drug combination also showed cardioprotective properties, which however, were mainly dependent on the contribution of the ET(A) receptor antagonist through the action of VEGF. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Glucose; Body Weight; Cell Count; Collagen Type III; Diabetes Mellitus, Type 2; Endothelin A Receptor Antagonists; Endothelin-1; Heart; Hemodynamics; Immunohistochemistry; Kidney; Kidney Function Tests; Male; Muscle Cells; Myocardium; Rats; Rats, Zucker; Real-Time Polymerase Chain Reaction; Receptors, Vascular Endothelial Growth Factor; Survival; Tyrosine; Vascular Endothelial Growth Factor A | 2011 |
Formation of methionine sulfoxide by peroxynitrite at position 1606 of von Willebrand factor inhibits its cleavage by ADAMTS-13: A new prothrombotic mechanism in diseases associated with oxidative stress.
An enhanced formation of reactive oxygen species and peroxynitrite occurs in several clinical settings including diabetes, coronary artery disease, stroke, sepsis, and chronic inflammatory diseases. Peroxynitrite oxidizes methionine and tyrosine residues to methionine sulfoxide (MetSO) and 3-nitrotyrosine (NT), respectively. Notably, ADAMTS-13 cleaves von Willebrand factor (VWF) exclusively at the Tyr1605-Met1606 peptide bond in the A2 domain. We hypothesized that peroxynitrite could oxidize either or both of these amino acid residues, thus potentially affecting ADAMTS-13-mediated cleavage. We tested our hypothesis using synthetic peptide substrates based on: (1) VWF Asp1596-Ala1669 sequence (VWF74) and (2) VWF Asp1596-Ala1669 sequence containing nitrotyrosine (VWF74-NT) or methionine sulfoxide (VWF74-MetSO) at position 1605 or 1606, respectively. The peptides were treated with recombinant ADAMTS-13 and the cleavage products analyzed by RP-HPLC. VWF74 oxidized by peroxynitrite underwent a severe impairment of its hydrolysis. Likewise, VWF74-MetSO was minimally hydrolyzed, whereas VWF74-NT was hydrolyzed slightly more efficiently than VWF74. Oxidation by peroxynitrite of purified VWF multimers inhibited ADAMTS-13 hydrolysis, but did not alter their electrophoretic pattern nor their ability to induce platelet agglutination by ristocetin. Moreover, VWF purified from type 2 diabetic patients showed oxidative damage, as revealed by enhanced carbonyl, NT, and MetSO content and was partially resistant to ADAMTS-13 hydrolysis. In conclusion, peroxynitrite may contribute to prothrombotic effects, hindering the proteolytic processing by ADAMTS-13 of high-molecular-weight VWF multimers, which have the highest ability to bind and activate platelets in the microcirculation. Topics: ADAM Proteins; ADAMTS13 Protein; Adult; Binding Sites; Blood Platelets; Case-Control Studies; Diabetes Mellitus, Type 2; Female; Humans; Hydrolysis; Male; Methionine; Middle Aged; Oxidative Stress; Peptide Fragments; Peroxynitrous Acid; Platelet Aggregation; Protein Multimerization; Ristocetin; Tyrosine; von Willebrand Diseases; von Willebrand Factor | 2010 |
Mitochondrial dysfunction in the type 2 diabetic heart is associated with alterations in spatially distinct mitochondrial proteomes.
Cardiac complications and heart failure are the leading cause of death in type 2 diabetic patients. Mitochondrial dysfunction is central in the pathogenesis of the type 2 diabetic heart. However, it is unclear whether this dysfunction is specific for a particular subcellular region. The purpose of this study was to determine whether mitochondrial dysfunction in the type 2 diabetic heart is specific to a spatially distinct subset of mitochondria. We investigated mitochondrial morphology, function, and proteomic composition of subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) in 18-wk-old db/db mice. Oxidative damage was assessed in subpopulations through the measurement of lipid peroxidation byproducts and nitrotyrosine residues. Proteomic profiles and posttranslational modifications were assessed in mitochondrial subpopulations using iTRAQ and multi-dimensional protein identification technologies, respectively. SSM from db/db hearts had altered morphology, including a decrease in size and internal complexity, whereas db/db IFM were increased in internal complexity. Db/db SSM displayed decreased state 3 respiration rates, electron transport chain activities, ATP synthase activities, and mitochondrial membrane potential and increased oxidative damage, with no change in IFM. Proteomic assessment revealed a greater impact on db/db SSM compared with db/db IFM. Inner mitochondrial membrane proteins, including electron transport chain, ATP synthesis, and mitochondrial protein import machinery, were predominantly decreased. We provide evidence that mitochondrial dysfunction in the type 2 diabetic heart is associated with a specific subcellular locale. Furthermore, mitochondrial morphological and functional indexes are impacted differently during type 2 diabetic insult and may result from the modulation of spatially distinct mitochondrial proteomes. Topics: Animals; Antioxidants; Cell Respiration; Diabetes Mellitus, Type 2; Disease Models, Animal; Electron Transport; Electron Transport Chain Complex Proteins; Ion Channels; Lipid Peroxidation; Male; Membrane Potential, Mitochondrial; Mice; Mitochondria, Heart; Mitochondrial ADP, ATP Translocases; Mitochondrial Proteins; Mitochondrial Proton-Translocating ATPases; Mitochondrial Size; Oxidative Stress; Protein Processing, Post-Translational; Proteome; Proteomics; Tyrosine; Uncoupling Protein 3 | 2010 |
Coagulation and oxidative stress plasmatic levels in a type 2 diabetes population.
Type 2 diabetes mellitus (DM2) is a metabolic disorder characterized by relative insulin deficiency, insulin resistance and hyperglycemia. DM2 improperly managed can cause severe complications such as renal failure, blindness or arterial disease. In addition to serious complications due to DM2, in the past 20 years, several studies have demonstrated the association between DM2, insulin resistance and prothrombotic risk. In our study, we wanted to evaluate the correlation between coagulation factor levels, oxidative plasmatic levels and DM2. We considered 20 DM2 patients (65% women and 35% men), 40-65 years of age, who had a BMI between 25 and 40 kg/m2 and followed a diet with or without oral antidiabetic treatment and 20 controls, blood donors, 15 men (75%) and five women (25%), who had a BMI between 25 and 40 kg/m2 and their age was between 40 and 65 years. Plasmatic levels of oxidative stress markers (tumor necrosis factor-alpha, nitrotyrosine, oxidized low-density lipoprotein) and coagulation markers (factors VII, VIII, IX, XI, XII, antithrombin III and fibrinogen) of both populations were analyzed following statistic criteria. The analyzed data of this study related to oxidative stress and coagulation factors proved that the differences observed between diabetic patients and controls were not statistically significant (P < 0.05) for tumor necrosis factor-alpha, nitrotyrosine, oxidized low-density lipoprotein, factor VII and factor XI; conversely for factor VIII, factor IX, factor XII, antithrombin III and fibrinogen, the results gave a difference statistically significant (P < 0.01). In patients with DM2, factor VIII increased from 79 to 103%, factor IX from 88 to 103%, factor XII from 87 to 105% and finally, antithrombin III from 81 to 103%. Different results between literature and our study could be due to fact that the patients considered were in the early stage of diabetes when endothelial damage is absent and vascular complications are not clinically expressed. In this study, it is still shown that DM2 is a multifactor disease and its physiopathologic mechanisms are not completely known today. Topics: Adult; Biomarkers; Blood Coagulation; Blood Coagulation Factors; Body Mass Index; Diabetes Mellitus, Type 2; Female; Humans; Lipoproteins, LDL; Male; Middle Aged; Oxidative Stress; Tumor Necrosis Factor-alpha; Tyrosine | 2009 |
Possible impact of impaired double-stranded RNA degradation and nitrosative stress on immuno-inflammatory cascade in type 2 diabetes.
The immune response can be triggered by molecules derived from microorganisms (PAMP) or from molecules derived from damaged or dead host cells, known as the damage-associated molecular-pattern molecules (DAMP). Their immune effects are accompanied by altered redox environment. The level of stable end products of nitric oxide (NO)- plasma nitrate and nitrite (NOx), carbonyl groups (PCO) and nitrotyrosine (NTY), in relation to the metabolism of dsRNAs (poly I:C and poly A:U) and xanthine oxidase (XO activity), in plasma of type2 diabetic patients was determined. Thirty-six patients with type 2 diabetes (age group 34-66 years, 19 male and 17 female) were allocated to the study. Diabetic patients had a significantly higher level of plasma NOx products, NTY and PCO, fructosamine (FA) and XO activity indicating about altered redox environment. The concentration of circulating ribonucleic acids (CNAs) was significantly higher in type 2 diabetic patients, which was accompanied by a significantly decreased activity of RNase against double stranded RNA forms (poly I:C and poly A:U), compared to control samples. To determine whether CNAs, as possible DAMP molecules, are capable of exerting effect on inflammatory and host antiviral response, the effect of isolated CNAs on NF-kappaB, Bcl-2, Bax, MDA-5 and IRF-3 regulation was evaluated in culture of fresh isolated thymocytes. Circulating nucleic acids isolated from type 2 diabetic patients were able to upregulate NF-kappaB more than control RNA samples. In the same experimental conditions the mild Bcl-2 upregulation, followed by the marked Bax upregulation, was demonstrated. Since the Bcl-2/Bax ratio was lower in type 2 diabetic samples, obtained results may implicate that CNAs may exert proapoptotic response in type 2 diabetes. The CNAs isolated from diabetic patients were able to downregulate MDA-5 and IRF-3, very important subjects of the surveillance and cellular anti-viral response. The major findings of the present study are that impaired dsRNA metabolism may lead to increased level of different sized RNAs in type 2 diabetic patients. Acting as possible DAMP molecules, they may contribute to higher susceptibility of immune cells to inflammatory cascade via NF-kappaB activation, and possible MDA-5/IRF-3 axis downregulation, what may have an influence on further ineffective response against different pathogens. Topics: Adult; Aged; Animals; bcl-2-Associated X Protein; Blood Glucose; Cells, Cultured; DEAD-box RNA Helicases; Diabetes Mellitus, Type 2; Female; Fluorescent Antibody Technique; Humans; Inflammation; Interferon Regulatory Factor-3; Interferon-Induced Helicase, IFIH1; Male; Middle Aged; NF-kappa B; Nitrites; Nucleic Acids; Proto-Oncogene Proteins c-bcl-2; Rats; RNA Stability; RNA, Double-Stranded; Thymus Gland; Tyrosine; Xanthine Oxidase | 2009 |
Glycaemic status in relation to oxidative stress and inflammation in well-controlled type 2 diabetes subjects.
The aim of the present observational study was to investigate the relationships between glycaemic status and levels of oxidative stress and inflammation in well-controlled type 2 diabetes subjects. Metabolic variables (weight, BMI, waist circumference (waist), blood glucose, glycated Hb (HbA(1c)), insulin, blood lipids), biomarkers of oxidative stress (8-iso-PGF(2alpha), malondialdehyde, 8-oxo-7,8-dihydro-2'-deoxyguanosine, formamido pyrimidine glycosylase-sites, frequency of micronucleated erythrocytes, nitrotyrosine) and inflammatory markers (high sensitivity C-reactive protein (hsCRP), IL-6, cyclo-oxygenase-catalyzed PGF(2alpha)-metabolite) were measured. Fifty-six patients (thirty women and twenty-six men, age 62.3 (SD 7.0) years, HbA(1c) 6.1 (SD 0.9) %, BMI 28.3 (SD 3.8) kg/m(2), waist 99.6 (SD 11.1) cm) were included in the study. HbA(1c) (r 0.29, P=0.03) and blood glucose (r 0.33, P=0.01) correlated positively with 8-iso-PGF(2alpha). Positive correlations were also observed between HbA(1c) and nitrotyrosine (r 0.42, P=0.01), waist and hsCRP (r 0.37, P=0.005), hsCRP and IL-6 (r 0.61, P<0.0001) and between PGF(2alpha)-metabolite and 8-iso-PGF(2alpha) (r 0.27, P=0.048). The present study indicates that glycaemic status is associated with oxidative stress even in subjects with well-controlled type 2 diabetes. Furthermore, inflammation was more related to abdominal obesity than to glycaemic control. A large number of biomarkers of oxidative stress and inflammation were investigated, but only a few associations were found between the markers. This could be due to the fact that none of these biomarkers biosynthesises via similar pathways or simultaneously owing to their diverse nature and origin. Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Biomarkers; Blood Glucose; Body Mass Index; C-Reactive Protein; Deoxyguanosine; Diabetes Mellitus, Type 2; Dinoprost; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Inflammation; Insulin; Interleukin-6; Lipids; Male; Malondialdehyde; Middle Aged; Obesity; Oxidative Stress; Probability; Statistics, Nonparametric; Tyrosine; Waist Circumference | 2009 |
Role of MCP-1 in tumor necrosis factor-alpha-induced endothelial dysfunction in type 2 diabetic mice.
Tumor necrosis factor-alpha (TNF-alpha) upregulates the expression of monocyte chemoattractant protein-1 (MCP-1) and adhesion molecules in type 2 diabetes. We hypothesized that TNF-alpha and MCP-1 may interact to contribute to the evolution of vascular inflammation and endothelial dysfunction in coronary arterioles in type 2 diabetes. To test this hypothesis, we administered anti-MCP-1 to block MCP-1 signaling in genetically modified mice with type 2 diabetes (Lepr(db)) and in heterozygote (m Lepr(db)) lean control. Anti-MCP-1 partially restored vasodilation to the endothelium-dependent vasodilator acetylcholine in isolated, cannulated, and pressurized coronary arterioles in Lepr(db) mice but did not affect vasodilation in m Lepr(db) mice. Anti-MCP-1 attenuated superoxide production and the protein expression of nitrotyrosine, which is an indicator of peroxynitrite production, in isolated coronary arterioles of Lepr(db) mice. Immunostaining results showed that the expression of MCP-1 and vascular cellular adhesion molecule-1 is colocalized with endothelial cells and macrophages. Anti-TNF-alpha or anti-MCP-1 markedly reduced macrophage infiltration and the number of MCP-1-positive endothelium in Lepr(db) mice. The neutralization of TNF-alpha or anti-MCP-1 reduced the expression of adhesion molecules, suggesting that proinflammatory cytokines interact to amplify the signaling process that leads to vascular dysfunction. These findings demonstrate that the endothelial dysfunction occurring in type 2 diabetes is the result of the effects of the inflammatory cytokine TNF-alpha and TNF-alpha-related signaling, including the expression of MCP-1 and adhesion molecules, which further exacerbates vessel inflammation and oxidative stress. Topics: Animals; Arterioles; Biomarkers; Chemokine CCL2; Coronary Vessels; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Female; I-kappa B Proteins; Inflammation Mediators; Macrophages; Male; Mice; Mice, Knockout; NF-kappa B; Nitric Oxide; Oxidative Stress; Peroxynitrous Acid; Phosphorylation; Receptors, Leptin; Serine; Signal Transduction; Superoxides; Tumor Necrosis Factor-alpha; Tyrosine; Vascular Cell Adhesion Molecule-1; Vasodilation; Vasodilator Agents | 2009 |
[Investigation to the levels of 3-nitrotyrosine and their correlation factors in type 2 diabetic patients].
To investigate levels of 3-nitrotyrosine in blood serum, and their correlation factors in type 2 diabetic patients.. A randomized case-control trial was carried out, in which 109 type 2 diabetic patients (case group) and 57 non-diabetic patients (control group) were enrolled. Anthropometric measurements, blood biochemical variables and 3-nitrotyrosine (3-NT) were measured.. There were no significant differences between two groups in age, body weight. However, blood glucose, glucosylated serum protein (GSP), total cholesterol, apolipoprotein C2 in case group were more higher than those in control group (P < 0.05). The levels of 3-NT in case group were more higher than those in control group, and 3-NT levels were higher in both male and female diabetic patients than those in non-diabetic male and female patients, respectively (P < 0.05). In case group, patients with BMI > or =28 had more higher 3-NT level than those with BMI < 24, and patients with blood glucose more than 6.1 mmol/L had more higher 3-NT level than those with glucose < or = 6.1 mmol/L (P < 0.05). The results of regression analysis in the case group showed that glucosylated hemoglobin (HbA1c), GSP, low density lipoprotein cholesterol (LDL-c) were the most correlated to 3-NT in blood.. Levels of 3-NT in case group were higher than those of control group. 3-NT level was closely correlated to HbAlc, GSP, and LDL-c in case group. Topics: Aged; Case-Control Studies; Cholesterol, LDL; Diabetes Mellitus, Type 2; Female; Glycated Hemoglobin; Glycated Serum Albumin; Glycation End Products, Advanced; Humans; Male; Middle Aged; Regression Analysis; Serum Albumin; Tyrosine | 2009 |
Recovery from hind limb ischemia is less effective in type 2 than in type 1 diabetic mice: roles of endothelial nitric oxide synthase and endothelial progenitor cells.
We sought to directly compare the effects of type 1 and type 2 diabetes on postischemic neovascularization and evaluate the mechanisms underlying differences between these groups. We tested the hypothesis that type 2 diabetic mice have a greater reduction in endothelial nitric oxide synthase (eNOS) expression, a greater increase in oxidative stress, and reduced arteriogenesis and angiogenesis, resulting in less complete blood flow recovery than type 1 diabetic mice after induction of hind limb ischemia.. Hind limb ischemia was generated by femoral artery excision in streptozotocin-treated mice (model of type 1 diabetes), in Lepr(db/db) mice (model of type 2 diabetes), and in control (C57BL/6) mice. Dependent variables included eNOS expression and markers of arteriogenesis, angiogenesis, and oxidative stress.. Postischemia recovery of hind limb perfusion was significantly less in type 2 than in type 1 diabetic mice; however, neither group demonstrated a significant increase in collateral artery diameter or collateral artery angioscore in the ischemic hind limb. The capillary/myofiber ratio in the gastrocnemius muscle decreased in response to ischemia in control or type 1 diabetic mice but remained the same in type 2 diabetic mice. Gastrocnemius muscle eNOS expression was lower in type 1 and 2 diabetic mice than in control mice. This expression decreased after induction of ischemia in type 2 but not in type 1 diabetic mice. The percentage of endothelial progenitor cells (EPC) in the peripheral blood failed to increase in either diabetic group after induction of ischemia, whereas this variable significantly increased in the control group in response to ischemia. EPC eNOS expression decreased after induction of ischemia in type 1 but not in type 2 diabetic mice. EPC nitrotyrosine accumulation increased after induction of ischemia in type 2 but not in type 1 diabetic mice. EPC migration in response to vascular endothelial growth factor was reduced in type 1 and type 2 diabetic mice vs control mice. EPC incorporation into tubular structures was less effective in type 2 diabetic mice. Extensive fatty infiltration was present in ischemic muscle of type 2 but not in type 1 diabetic mice.. Type 2 diabetic mice displayed a significantly less effective response to hind limb ischemia than type 1 diabetic mice. Topics: Animals; Blood Glucose; Body Weight; Chemotaxis; Collateral Circulation; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Endothelial Cells; Hindlimb; Ischemia; Mice; Mice, Inbred C57BL; Mice, Mutant Strains; Muscle, Skeletal; Neovascularization, Physiologic; Nitric Oxide Synthase Type III; Oxidative Stress; Receptors, Leptin; Recovery of Function; Regional Blood Flow; Stem Cells; Time Factors; Tyrosine; Vascular Endothelial Growth Factor A | 2009 |
Heightened efficacy of nitric oxide-based therapies in type II diabetes mellitus and metabolic syndrome.
Type II diabetes mellitus (DM) and metabolic syndrome are associated with accelerated restenosis following vascular interventions due to neointimal hyperplasia. The efficacy of nitric oxide (NO)-based therapies is unknown in these environments. Therefore, the aim of this study is to examine the efficacy of NO in preventing neointimal hyperplasia in animal models of type II DM and metabolic syndrome and examine possible mechanisms for differences in outcomes. Aortic vascular smooth muscle cells (VSMC) were harvested from rodent models of type II DM (Zucker diabetic fatty), metabolic syndrome (obese Zucker), and their genetic control (lean Zucker). Interestingly, NO inhibited proliferation and induced G0/G1 cell cycle arrest to the greatest extent in VSMC from rodent models of metabolic syndrome and type II DM compared with controls. This heightened efficacy was associated with increased expression of cyclin-dependent kinase inhibitor p21, but not p27. Using the rat carotid artery injury model to assess the efficacy of NO in vivo, we found that the NO donor PROLI/NO inhibited neointimal hyperplasia to the greatest extent in type II DM rodents, followed by metabolic syndrome, then controls. Increased neointimal hyperplasia correlated with increased reactive oxygen species (ROS) production, as demonstrated by dihydroethidium staining, and NO inhibited this increase most in metabolic syndrome and DM. In conclusion, NO was surprisingly a more effective inhibitor of neointimal hyperplasia following arterial injury in type II DM and metabolic syndrome vs. control. This heightened efficacy may be secondary to greater inhibition of VSMC proliferation through cell cycle arrest and regulation of ROS expression, in addition to other possible unidentified mechanisms that deserve further exploration. Topics: Animals; Aorta, Abdominal; Apoptosis; Carotid Artery Injuries; Cell Cycle; Cell Proliferation; Cells, Cultured; Diabetes Mellitus, Type 2; Disease Models, Animal; DNA Replication; Dose-Response Relationship, Drug; Hyperplasia; Male; Metabolic Syndrome; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nitric Oxide; Nitric Oxide Donors; Proline; Rats; Rats, Zucker; Reactive Oxygen Species; S-Nitroso-N-Acetylpenicillamine; Triazenes; Tyrosine | 2008 |
Renal mitochondrial damage and protein modification in type-2 diabetes.
Although mitochondrial reduction-oxidation (redox) stress and increase in membrane permeability play an important role in diabetic-associated renal microvasculopathies, it is unclear whether the intra-renal mitochondrial oxidative stress induces mitochondrial protein modifications, leading to increase mitochondrial membrane permeability. The hypothesis is that mitochondrial oxidative stress induces mitochondrial protein modification and leakage in the mitochondrial membrane in type-2 diabetes. The present study was conducted to determine the involvement of intra-renal mitochondrial oxidative stress in mitochondrial protein modifications and modulation of membrane permeability in the setting of type-2 diabetes. Diabetes was induced by 6-week regimen of a high calorie and fat diet in C57BL/6J mice (Am J Physiol 291:F694-F701, 2006). Subcellular fractionation was carried out in kidney tissue from wild type and diabetic mice. All fractions were highly enriched in their corresponding marker enzyme. Subcellular protein modifications were determined by Western blot and 2-D proteomics. The results suggest that diabetes-induced oxidative stress parallels an increase in NADPH oxidase-4 (NOX-4) and decrease in superoxide dismutase-1, 2 (SOD-1, 2) expression, in mitochondrial compartment. We observed loss of mitochondrial membrane permeability as evidenced by leakage of mitochondrial cytochrome c and prohibitin to the cytosol. However, there was no loss in control tissue. The 2-D Western blots for mitochondrial post-translational modification showed an increase in nitrotyrosine generation in diabetes. We conclude that diabetes-induced intra-renal mitochondrial oxidative stress is reflected by an increase in mitochondrial membrane permeability and protein modifications by nitrotyrosine generation. Topics: Animals; Cytosol; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Male; Mice; Mice, Inbred C57BL; Microcirculation; Mitochondria; Mitochondrial Membranes; Oxidation-Reduction; Oxidative Stress; Permeability; Reference Values; Tyrosine | 2008 |
Effect of pitavastatin on type 2 diabetes mellitus nephropathy in KK-Ay/Ta mice.
It is generally considered that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) have renoprotective effects via a pathway independent of their cholesterol-lowering cascade. In the kidneys of diabetic nephropathy, monomeric endothelial nitric oxide synthase (eNOS) is thought to be overexpressed; and its dimerization is suppressed. In the present study, we investigated the expression of eNOS and oxidative stress in type 2 diabetes mellitus KK-Ay/Ta mice treated with pitavastatin, one of the statins. The KK-Ay/Ta mice were divided into 3 groups and given pitavastatin intraperitoneally starting at 8 weeks of age for 8 weeks: pitavastatin 3 mg/(kg d) (n=5), pitavastatin 10 mg/(kg d) (n=5), and a control group (n=10). The urinary albumin-creatinine ratio (ACR), urinary 8-hydroxy-2'-deoxyguanosine, body weight, fasting blood glucose, hemoglobin A1c, total cholesterol, and triglyceride were measured; and the intraperitoneal glucose tolerance test was performed. The eNOS, nitrotyrosine, and p47 phox were evaluated by immunohistochemical analyses and/or Western blot analyses. Guanosine triphosphate cyclohydrolase 1 messenger RNA expression in the kidneys was evaluated using a real-time polymerase chain reaction assay. Pitavastatin improved the levels of urinary ACR and 8-hydroxy-2'-deoxyguanosine, intraperitoneal glucose tolerance test, and hemoglobin A1c. Protein levels of monomeric eNOS, nitrotyrosine, and p47 phox in the kidneys were decreased in the pitavastatin-treated groups. Guanosine triphosphate cyclohydrolase 1 messenger RNA expression was significantly increased in the pitavastatin groups. There were no significant changes in body weight, levels of fasting blood glucose, serum total cholesterol, triglyceride, and blood pressure among all groups. Pitavastatin improved urinary ACR apparently because of suppression of eNOS uncoupling and its antioxidant effect in the kidneys of KK-Ay/Ta mice. Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Glycated Hemoglobin; GTP Cyclohydrolase; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Immunohistochemistry; Mice; Mice, Inbred C57BL; NADPH Oxidases; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Protein Kinase C; Quinolines; RNA, Messenger; Tyrosine | 2008 |
Dietary advanced glycation endproducts and oxidative stress: in vivo effects on endothelial function and adipokines.
Advanced glycation endproducts (AGEs) and oxidative stress (OS) contribute to the development and progression of diabetic complications. We have reported that dietary AGEs and OS induce acute endothelial dysfunction in vivo, but little is known about their effects on adipokines. Twenty inpatients with type 2 diabetes mellitus (mean age: 55.9; range: 32-71 years), received a standard diabetes diet for 6 days. On days 4 and 6, the acute effects of a high-AGE (HAGE) or a low-AGE (LAGE) meal (15.100 vs. 2.750 kU AGE) were studied in a randomized, cross-over, investigator-blinded design. Measurements were performed after an overnight fast, at baseline (B) and at 2, 4, and 6 h after the HAGE or LAGE meals. Both meals had the same ingredients and differed only by the cooking method. Two h following HAGE, a significant decrease from baseline occurred in adiponectin (-10%*double dagger vs. +0%) and leptin (-22%*double dagger vs. -13%*), and a significant increase occurred in vascular cell adhesion molecule 1 (+19%*double dagger vs. -5%) and thiobarbituric acid reactive substances (+23%*double dagger vs. +6%). These changes did not occur, or occurred to a lesser extent, following LAGE. At 4 h following HAGE, an increase in methylglyoxal (+20%double dagger vs. -5%) and E-selectin (+54%*double dagger vs. -3%) occurred. Urinary AGEs increased only after HAGE (+51%*double dagger vs. -2%; values presented as HAGE vs. LAGE; *P < 0.05 vs. baseline, double daggerP < 0.05 vs. LAGE). The postprandial excursions in glucose, insulin, and triglycerides were similar between both meals. A meal rich in AGEs induces acute endothelial and adipocyte dysfunction. These effects were prevented by changing the cooking method. Topics: Adipokines; Adiponectin; Adult; Age of Onset; Aged; Diabetes Mellitus, Type 2; Diet; E-Selectin; Endothelium, Vascular; Female; Glycation End Products, Advanced; Humans; Inpatients; Leptin; Male; Middle Aged; Oxidative Stress; Thiobarbituric Acid Reactive Substances; Tyrosine | 2008 |
Calorie restriction improves cardiovascular risk factors via reduction of mitochondrial reactive oxygen species in type II diabetic rats.
Uncoupling protein 2 (UCP2) is an important regulator of intracellular reactive oxygen species (ROS) production. We determined the effects of calorie restriction (CR) on the dynamic aspects of mitochondrial ROS production, UCP2, and the nitric oxide (NO)-cGMP pathway in the cardiovascular tissues of type II diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Some rats were on restricted diets (30% reduction from free intake) from age 29 to 42 weeks. Blood glucose, hemoglobin A1c, plasma levels of free fatty acid, triacylglycerol, and plasminogen activator inhibitor-1 in OLETF rats were significantly higher than those in nondiabetic control [Long-Evans Tokushima Otsuka (LETO)] rats at 29 weeks. Mitochondrial ROS production and UCP2 expression significantly increased in the heart and aorta of OLETF rats compared with those in LETO rats. A fibrogenic growth factor, transforming growth factor (TGF)-beta1 in the coronary vessels, endothelial nitric-oxide synthase, and aortic nitrotyrosine were increased in OLETF rats at 42 weeks. In contrast, an index of the NO-cGMP pathway, phosphorylated vasodilator-stimulated phosphoprotein, and superoxide dismutase activity in the aorta were significantly diminished. The relationship between UCP2 and ROS production in the cardiovascular function of diabetic rats being fed a calorie-restricted diet is unknown. These abnormalities in OLETF rats were reversed to normal levels by CR. CR significantly improved the NO-cGMP pathway via normalizing ROS generation in OLETF rats. A decrease in UCP2 expression by CR may be a compensatory mechanism to counteract decreased intracellular oxidative stress. The data suggest that CR may prevent cardiovascular tissues from oxidative stress provoked by diabetes mellitus. Topics: Animals; Body Weight; Caloric Restriction; Cardiovascular Diseases; Diabetes Mellitus, Type 2; Glucose Transporter Type 4; Ion Channels; Lipid Peroxidation; Male; Mitochondria; Mitochondrial Proteins; Nitric Oxide Synthase Type III; Organ Size; Plasminogen Activator Inhibitor 1; Rats; Rats, Long-Evans; Reactive Oxygen Species; Risk Factors; Tyrosine; Uncoupling Protein 2 | 2007 |
Effect of pyridoxamine (K-163), an inhibitor of advanced glycation end products, on type 2 diabetic nephropathy in KK-A(y)/Ta mice.
Advanced glycation end products (AGEs) from the Maillard reaction contribute to the pathogenesis of diabetes-associated complications such as diabetic nephropathy. In therapeutic interventions for reducing AGEs, many compounds have been reported as AGE inhibitors. The objective of the present study was to examine the effect of pyridoxamine (K-163), an AGE inhibitor, in type 2 diabetic KK-A(y)/Ta mice. KK-A(y)/Ta mice were given pyridoxamine (200 or 400 mg/kg per day) starting at 8 weeks of age for 12 weeks. They were divided into 3 groups as follows: pyridoxamine 200 mg/kg per day treatment group (n = 10), pyridoxamine 400 mg/kg per day treatment group (n = 10), and a tap water group as the control group (n = 20). The urinary albumin/creatinine ratio (ACR), body weight (BW), levels of fasting and casual blood glucose, blood glycated hemoglobin (HbA(1c)), fasting serum insulin, triglyceride (TG), total cholesterol (T-Cho), and 3-deoxyglucosone (3DG), and systemic blood pressure were measured as biochemical parameters. N(epsilon)-(Carboxymethyl)lysine (CML) and nitrotyrosine accumulations in glomeruli were evaluated by immunohistochemical analyses. Transforming growth factor beta1 (TGF-beta1) and laminin-beta1 messenger RNA expressions in the kidneys were evaluated by real-time polymerase chain reaction. Pyridoxamine, especially at 400 mg/kg per day, improved the levels of urinary ACR, fasting serum TG, and 3DG. CML and nitrotyrosine accumulations in glomeruli were decreased. Furthermore, large doses of pyridoxamine prevented not only urinary ACR but also increases of BW, casual blood glucose, and HbA(1c). TGF-beta1 and laminin-beta1 messenger RNA expressions in kidneys were significantly lower than those in the controls. There were no significant changes in the levels of fasting blood glucose, serum T-Cho, and systemic blood pressure among all groups. It appears that pyridoxamine improved urinary ACR by its anti-AGE and anti-oxidant effects in the kidneys of KK-A(y)/Ta mice. Topics: Animals; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Dose-Response Relationship, Drug; Glycation End Products, Advanced; Immunohistochemistry; Laminin; Lysine; Male; Mice; Pyridoxamine; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Schiff Bases; Transforming Growth Factor beta1; Tyrosine | 2007 |
Insulin secretion defects of human type 2 diabetic islets are corrected in vitro by a new reactive oxygen species scavenger.
Oxidative stress is a putative mechanism leading to beta-cell damage in type 2 diabetes. We studied isolated human pancreatic islets from type 2 diabetic and non-diabetic subjects, matched for age and body mass index. Evidence of increased oxidative stress in diabetic islets was demonstrated by measuring nitrotyrosine concentration and by electron paramagnetic resonance. This was accompanied by reduced glucose-stimulated insulin secretion, as compared to non-diabetic islets (Stimulation Index, SI: 0.9 +/- 0.2 vs. 2.0 +/- 0.4, P<0.01), and by altered expression of insulin (approximately -60%), catalase (approximately +90%) and glutathione peroxidase (approximately +140%). When type 2 diabetic islets were pre-exposed for 24 h to the new antioxidant bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate di-hydrochloride, nitrotyrosine levels, glucose-stimulated insulin secretion (SI: 1.6+/-0.5) and gene expressions improved/normalized. These results support the concept that oxidative stress may play a role in type 2 diabetes beta-cell dysfunction; furthermore, it is proposed that therapy with antioxidants could be an interesting adjunctive pharmacological approach to the treatment of type 2 diabetes. Topics: Antioxidants; Cells, Cultured; Diabetes Mellitus, Type 2; Glucose; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Oxidative Stress; Reactive Oxygen Species; Tyrosine | 2007 |
Reduction of oxidative stress by a new low-molecular-weight antioxidant improves metabolic alterations in a nonobese mouse diabetes model.
We have previously established a nonobese diabetes mouse model characterized by moderate hyperglycemic levels, like those usually occurring in human type 2 diabetes. As oxidative stress is considered a major mechanism of progressive beta-cell damage in diabetes, we tested in this model the protective effects of a new low-molecular-weight antioxidant, namely, bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)decandioate dihydrochloride (IAC).. Diabetes was induced in C57Bl/6J mice by streptozotocin (STZ) and nicotinamide (NA) administration. Two weeks later, STZ-NA mice were treated for 5 weeks with different doses of IAC (15 or 30 mg/kg per day intraperitoneally) and monitored for glycemia, insulinemia, glucose tolerance, and pancreatic insulin content.. Streptozotocin-NA mice showed moderate hyperglycemia, hypoinsulinemia, glucose intolerance, growth impairment, and markedly reduced pancreatic insulin content (22% of controls). IAC-treated STZ-NA mice showed clear-cut reduction of hyperglycemia and attenuation of glucose intolerance, associated to higher residual pancreatic insulin content with respect to untreated diabetic animals. Plasma nitrotyrosine levels (an index of oxidative stress), enhanced 3-fold in diabetic mice, were significantly reduced by IAC treatment. Significant correlations were found between plasma nitrotyrosine values and either blood glucose levels or pancreatic insulin content.. In the STZ-NA diabetic mouse model, the new antioxidant, IAC, improves diabetic metabolic alterations, likely by counteracting beta-cell dysfunction and loss associated with oxidative stress. Topics: Animals; Antioxidants; Blood Glucose; Body Weight; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dose-Response Relationship, Drug; Esters; Fatty Acids, Nonesterified; Glucose Intolerance; Glucose Tolerance Test; Hyperglycemia; Hypoglycemic Agents; Insulin; Male; Mice; Mice, Inbred C57BL; Molecular Weight; Niacinamide; Oxidative Stress; Pancreas; Piperidines; Streptozocin; Time Factors; Tyrosine | 2007 |
The vascular smooth muscle cells apoptosis in asymptomatic diabetic carotid plaques: role of glycemic control.
Topics: Actins; Aged; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Apoptosis; Blood Glucose; Carotid Stenosis; Caspase 3; Caspases; Collagen; Diabetes Mellitus, Type 2; Endarterectomy, Carotid; Female; Glycated Hemoglobin; Humans; Hyperglycemia; In Situ Nick-End Labeling; Interleukin-1; Macrophages; Male; Muscle, Smooth, Vascular; Oxidative Stress; Tumor Necrosis Factor-alpha; Tyrosine | 2006 |
eNOS gene therapy exacerbates hepatic ischemia-reperfusion injury in diabetes: a role for eNOS uncoupling.
Previous studies indicate that endothelial nitric oxide synthase (eNOS) function is impaired in diabetes as a result of increased vascular generation of reactive oxygen species. We hypothesized that eNOS gene therapy would augment NO. bioavailability and protect against hepatic ischemia-reperfusion (I-R) injury in type 2 diabetes mellitus. We developed a transgenic (Tg) diabetic mouse in which eNOS is systemically overexpressed. We also examined the effects of hepatic eNOS adenovirus therapy in diabetic mice. Diabetic (db/db) and nondiabetic mice were subjected to hepatic I-R injury. In nondiabetic mice, genetic overexpression of eNOS (both eNOS-Tg and eNOS adenovirus) resulted in hepatoprotection. In contrast, hepatic I-R injury was significantly increased in the db/db eNOS-Tg mouse, as serum alanine aminotransaminase (ALT) levels were increased by 3.3-fold compared with diabetic controls. Similarly, eNOS adenovirus treatment resulted in a 3.2-fold increase in serum ALT levels as compared with diabetic controls. We determined that hepatic eNOS was dysfunctional in the db/db mouse and increased genetic expression of eNOS resulted in greater production of peroxynitrite. Treatment with the eNOS cofactor tetrahydrobiopterin (BH4) or the BH4 precursor sepiapterin resulted in a significant decrease in serum ALT levels following I-R injury. We present clear examples of the protective and injurious nature of NO. therapy in I-R. Our data indicate that eNOS exists in an "uncoupled" state in the setting of diabetes and that "recoupling" of the eNOS enzyme with cofactor therapy is beneficial. Topics: Animals; Biological Availability; Biopterins; Diabetes Mellitus, Type 2; Drug Synergism; Genetic Therapy; Liver; Metalloporphyrins; Mice; Mice, Inbred Strains; Mice, Transgenic; Nitric Oxide Donors; Nitric Oxide Synthase Type III; Nitrites; Phenotype; Phosphorylation; Pterins; Reperfusion Injury; Severity of Illness Index; Tyrosine | 2006 |
Effects of eicosapentaenoic acid on the early stage of type 2 diabetic nephropathy in KKA(y)/Ta mice: involvement of anti-inflammation and antioxidative stress.
Eicosapentaenoic acid (EPA) has been reported to have beneficial effects on the progression of various renal diseases including diabetic nephropathy; however, the precise mechanisms are not completely understood. We examined the effects of EPA on the early stage of type 2 diabetic nephropathy in KKA(y)/Ta mice and the possible role of inflammation, oxidative stress, and growth factor in this process. KKA(y)/Ta mice were divided into 2 groups. The treatment group was injected with EPA ethyl ester at 1 g/kg per day intraperitoneally from 12 to 20 weeks of age and the control group was injected with saline. Renal morphologic examinations were performed after 8 weeks of treatment. Glomerular macrophage infiltration and expression of monocyte chemoattractant protein 1, malondialdehyde (MDA), nitrotyrosine, transforming growth factor beta1 (TGF-beta1), and type I collagen were evaluated. Eicosapentaenoic acid decreased the levels of urinary albumin, serum triglyceride and MDA, and improved glucose intolerance in KKA(y)/Ta mice. Morphometric analysis showed that accumulation of extracellular matrix and the tubulointerstitial fibrosis area were significantly decreased after treatment. Immunohistochemistry revealed that glomerular macrophage infiltration and the expression of MDA and nitrotyrosine in KKA(y)/Ta mice were increased and were inhibited by EPA treatment. Protein and gene expression levels of monocyte chemoattractant protein 1, TGF-beta1, and type I collagen, which were evaluated by immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction, were down-regulated in the EPA treatment group. In conclusion, EPA improves type 2 diabetic nephropathy in KKA(y)/Ta mice. This beneficial effect might be mediated by attenuation of metabolic abnormalities and inhibition of renal inflammation, oxidative stress, and TGF-beta expression. Topics: Animals; Anti-Inflammatory Agents; Chemokine CCL2; Collagen Type I; Diabetes Mellitus, Type 2; Diabetic Nephropathies; Eicosapentaenoic Acid; Lipid Peroxidation; Macrophages; Male; Mice; Oxidative Stress; Phenotype; Transforming Growth Factor beta1; Tyrosine | 2006 |
Functional and molecular defects of pancreatic islets in human type 2 diabetes.
To shed further light on the primary alterations of insulin secretion in type 2 diabetes and the possible mechanisms involved, we studied several functional and molecular properties of islets isolated from the pancreata of 13 type 2 diabetic and 13 matched nondiabetic cadaveric organ donors. Glucose-stimulated insulin secretion from type 2 diabetic islets was significantly lower than from control islets, whereas arginine- and glibenclamide-stimulated insulin release was less markedly affected. The defects were accompanied by reduced mRNA expression of GLUT1 and -2 and glucokinase and by diminished glucose oxidation. In addition, AMP-activated protein kinase activation was reduced. Furthermore, the expression of insulin was decreased, and that of pancreatic duodenal homeobox-1 (PDX-1) and forkhead box O1 (Foxo-1) was increased. Nitrotyrosine and 8-hydroxy-2'-deoxyguanosine concentrations, markers of oxidative stress, were significantly higher in type 2 diabetic than control islets, and they were correlated with the degree of glucose-stimulated insulin release impairment. Accordingly, 24-h exposure to glutathione significantly improved glucose-stimulated insulin release and decreased nitrotyrosine concentration, with partial recovery of insulin mRNA expression. These results provide direct evidence that the defects of insulin secretion in type 2 diabetic islets are associated with multiple islet cell alterations. Most importantly, the current study shows that the functional impairment of type 2 diabetic islets can be, at least in part, reversible. In this regard, it is suggested that reducing islet cell oxidative stress is a potential target of human type 2 diabetes therapy. Topics: 8-Hydroxy-2'-Deoxyguanosine; Adult; Aged; AMP-Activated Protein Kinases; Deoxyguanosine; Diabetes Mellitus, Type 2; Female; Gene Expression; Glucose; Glutathione; Humans; Insulin; Insulin Secretion; Islets of Langerhans; Male; Middle Aged; Multienzyme Complexes; Oxidative Stress; Protein Serine-Threonine Kinases; Time Factors; Tyrosine | 2005 |
Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
Although diabetes is a major risk factor for vascular diseases, e.g., hypertension and atherosclerosis, mechanisms that underlie the "risky" aspects of diabetes remain obscure. The current study is intended to examine the notion that diabetic endothelial dysfunction stems from a heightened state of oxidative stress induced by an imbalance between vascular production and scavenging of reactive oxygen/nitrogen species. Goto-Kakizaki (GK) rats were used as a genetic animal model for non-obese type II diabetes. Nitric oxide (NO) bioavailability and O2- generation in aortic tissues of GK rats were assessed using the Griess reaction and a lucigenin-chemiluminescence-based technique, respectively. Organ chamber-based isometric tension studies revealed that aortas from GK rats had impaired relaxation responses to acetylcholine whereas a rightward shift in the dose-response curve was noticed in the endothelium-independent vasorelaxation exerted by the NO donor sodium nitroprusside. An enhancement in superoxide (O2-) production and a diminuation in NO bioavailability were evident in aortic tissues of GK diabetic rats. Immunoblotting and high-performance liquid chromatography (HPLC)-based techniques revealed, respectively, that the above inverse relationship between O2- and NO was associated with a marked increase in the protein expression of nitric oxide synthase (eNOS) and a decrease in the level of its cofactor tetrahydrobiopterin (BH4) in diabetic aortas. Endothelial denudation by rubbing or the addition of pharmacological inhibitors of eNOS (e.g. N(omega)-nitro-L-arginine methyl ester (L-NAME)), and NAD(P)H oxidase (e.g. diphenyleneiodonium, apocynin) strikingly reduced the diabetes-induced enhancement in vascular O2- production. Aortic contents of key markers of oxidative stress (isoprostane F2alpha III, protein-bound carbonyls, nitrosylated protein) in connection with the protein expression of superoxide generating enzyme NAD(P)H oxidase (e.g. p47phox, pg91phox), a major source of reactive oxygen species in vascular tissue, were elevated as a function of diabetes. In contrast, the process involves in the vascular inactivation of reactive oxygen species exemplified by the activity of CuZnSOD was reduced in this diseased state. Our studies suggest that diabetes produces a cascade of events involving production of reactive oxygen species from the NADPH oxidase leading to oxidation of BH4 and uncoupling of NOS. This promotes the oxidative inactivation of NO with Topics: Animals; Aorta, Thoracic; Biopterins; Body Weight; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelium, Vascular; Enzyme Inhibitors; Female; Humans; In Vitro Techniques; Isoprostanes; Male; NADPH Oxidases; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Nitroprusside; Oxidation-Reduction; Protein Subunits; Proteins; Rats; Rats, Inbred Strains; Rats, Wistar; Superoxide Dismutase; Superoxides; Tyrosine; Vasodilation; Vasodilator Agents | 2005 |
Inducible nitric oxide synthase and vascular endothelial growth factor are colocalized in the retinas of human subjects with diabetes.
Nitric oxide (NO) mediates vascular endothelial growth factor (VEGF)-induced angiogenesis and vascular hyperpermeability. This study was undertaken to study the cellular distribution of inducible nitric oxide synthase (iNOS) and VEGF in the retinas from human subjects with diabetes mellitus. In addition, glial reactivity and peroxynitrite generation were detected by immunolocalization of glial fibrillary acidic protein (GFAP) and nitrotyrosine, respectively.. Eight post-mortem eyes from four consecutive subjects with diabetes mellitus and eight eyes from four subjects without diabetes and without known ocular disease were prospectively collected and examined. We used immunohistochemical techniques and antibodies directed against iNOS, VEGF, GFAP, and nitrotyrosine.. In retinas from all subjects without diabetes, weak GFAP immunoreactivity was confined to nerve fibre and ganglion cell layers. There was no immunoreactivity for iNOS, nitrotyrosine, and VEGF. All diabetic retinas showed GFAP induction in Müller cells and GFAP upregulation in nerve fibre and ganglion cell layers. All diabetic retinas showed cytoplasmic immunoreactivity for iNOS, and VEGF in ganglion cells, cells in the inner nuclear layer, and glial cells. In serial sections, ganglion cells and cells in the inner nuclear layer expressing VEGF were localized in the same area of iNOS-expressing ganglion cells and cells in the inner nuclear layer. Six retinas from three subjects with diabetes showed immunoreactivity for nitrotyrosine in vascular endothelial cells in inner retinal layer.. iNOS and VEGF are colocalized in diabetic retinas. Increased GFAP immunoreactivity is a pathological event in the retina during diabetes. Topics: Adult; Aged; Diabetes Mellitus, Type 2; Female; Glial Fibrillary Acidic Protein; Humans; Male; Middle Aged; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prospective Studies; Retina; Tyrosine; Vascular Endothelial Growth Factors | 2004 |
Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes.
Inadequate angiogenic response to ischemia in diabetic myocardium could result in poor collateral formation. Because hypoxia-inducible factor (HIF)-1alpha is a transcriptional activator of vascular endothelial growth factor (VEGF) and is critical for initiating angiogenic responses to hypoxia, we investigated the expression of HIF-1alpha and VEGF in specimens of human heart tissue to elucidate the molecular responses to myocardial ischemia in diabetic patients during unstable angina. Moreover, accumulation of a marker of protein nitration nitrotyrosine, as well as the superoxide anion (O(2)(-)) levels and inducible nitric oxide synthase (iNOS), were evaluated. Ventricular biopsy specimens from 15 type 2 diabetic and 14 nondiabetic patients presenting with unstable angina (ischemic group) and from 20 patients (11 type 2 diabetic and 9 nondiabetic patients) who underwent coronary bypass surgery without angina within the preceding 10 days (control group) were collected during coronary bypass surgery. Nondiabetic patients had higher HIF-1alpha and VEGF expressions compared with diabetic patients (P < 0.001). As compared with nondiabetic specimens, diabetic specimens showed higher levels of both iNOS mRNA and protein levels (P < 0.001) associated with the highest tissue levels of nitrotyrosine and O(2)(-) (P < 0.001). Diabetes is associated with increased myocardial tissue levels of iNOS, O(2)(-), and nitrotyrosine and reduced expression of myocardial angiogenesis factors during ischemia. Topics: Acute Disease; Angina, Unstable; Collateral Circulation; Coronary Artery Bypass; Diabetes Mellitus, Type 2; Female; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Male; Middle Aged; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; RNA, Messenger; Superoxides; Transcription Factors; Tyrosine; Vascular Endothelial Growth Factor A; Ventricular Function | 2004 |
Role of hyperglycemia in nitrotyrosine postprandial generation.
Recently, much attention has been paid to the possibility that postprandial hyperglycemia may be a cardiovascular risk factor in diabetes. Oxidative stress has been involved in the pathogenesis of diabetic complications, and increased plasma levels of nitrotyrosine, a product of peroxynitrite action, have been found in the plasma of diabetic subjects. The aim of the present study was to evaluate whether postprandial hyperglycemia is accompanied by nitrotyrosine generation and, if so, to explore a possible direct role of hyperglycemia in such a phenomenon.. A total of 23 type 2 diabetic patients and 15 matched normal healthy subjects were recruited for this study. Two different tests were performed in diabetic patients: a standard meal preceded by regular insulin (0.15 units/kg body wt) or insulin aspart (0.15 units/kg body wt) to achieve different levels of postprandial hyperglycemia. The meal test was also performed in healthy control subjects. At 0 min and 1, 2, 4, and 6 h after each meal, blood glucose, triglyceride, and nitrotyrosine levels were measured.. Fasting nitrotyrosine was significantly increased in diabetic patients and was further increased during both meal tests in diabetic subjects but not normal subjects. As compared with regular insulin, aspart administration significantly reduced the area under the curve of both glycemia (P < 0.04) and nitrotyrosine (P < 0.03), whereas that of triglycerides was not significantly affected by the treatment.. This study shows a direct correlation between postprandial hyperglycemia and the production of nitrotyrosine, a marker of oxidative stress, in patients with type 2 diabetes. Topics: Biomarkers; Blood Glucose; Diabetes Mellitus, Type 2; Female; Humans; Hyperglycemia; Male; Middle Aged; Oxidative Stress; Postprandial Period; Triglycerides; Tyrosine | 2002 |
Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control.
The aim of this study is to investigate the status of oxidative stress and nitric oxide related parameters in type II diabetes mellitus (DM) patients in which heart disease, atherosclerosis, retinopathy, and nephropathy commonly occur, and also to determine the effect of glycemic control on these parameters.. Erythrocyte copper zinc-superoxide dismutase (CuZn-SOD), erythrocyte and plasma selenium dependent glutathione peroxidase (Se-GPx), erythrocyte catalase (CAT) activities, erythrocyte and plasma thiobarbituric acid reactive substances (TBARS) levels; nitrite/nitrate (NO(2)(-)/NO(3)(-)), cyclic guanosine monophosphate (cGMP) and nitrotyrosine levels in plasma of type II DM patients were measured.. Erythrocyte CuZn-SOD activities in type II DM were significantly higher than those of the control subjects (p < 0.05). TBARS levels in type II DM were significantly higher than the control subjects (p < 0.001). Plasma NO(2)(-)/NO(3)(-) levels in type II DM patients both during poor glycemic control and after three months of oral antidiabetic treatment were significantly higher than those of the control subjects (p < 0.001). Plasma cGMP levels in type II DM patients during poor glycemic control were significantly lower than those of control subjects (p < 0.001).. These results indicate that oxidative status and nitric oxide metabolism are affected in type II DM patients. We found high CuZn-SOD activity in type II DM patients. This increased activity could not protect the patients against the reactive oxygen species (ROS), since lipid peroxidation (defined by erythrocyte and plasma TBARS levels) still occurs in DM patients. After the therapy with oral antidiabetic agents for three months, erythrocyte SE-GPx and CAT activities were found to be decreased below the control values. Our results suggested that the low cGMP levels in the study may be a good marker of endothelium dysfunction in DM. Topics: Adult; Aged; Case-Control Studies; Catalase; Cyclic GMP; Diabetes Mellitus, Type 2; Erythrocytes; Female; Glutathione Peroxidase; Humans; Hyperglycemia; Hypoglycemic Agents; Male; Middle Aged; Nitrates; Nitric Oxide; Nitrites; Oxidative Stress; Reactive Oxygen Species; Selenium; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances; Time Factors; Tyrosine | 2001 |
Detection of nitrotyrosine in the diabetic plasma: evidence of oxidative stress.
Oxidative stress plays an important role in diabetic vascular complications. It has been shown that an imbalance in the ratio of nitric oxide: superoxide anion, because of a prevalence of superoxide anion, leads to an alteration in vascular reactivity. In this condition peroxynitrite production, resulting from the reaction between nitric oxide and superoxide, could increase. Peroxynitrite is responsible for nitration of tyrosine residues in proteins. Therefore, the presence of nitrotyrosine in plasma proteins is considered indirect evidence of peroxynitrite production. The aim of this study was to demonstrate the presence of nitrotyrosine in the plasma of patients with Type II (non-insulin-dependent) diabetes mellitus and to correlate its concentrations with the plasma concentrations of glucose and antioxidant defenses.. A total of 40 Type II diabetic patients and 35 healthy subjects were enrolled, and glycaemia, plasma nitrotyrosine, total antioxidant parameter and glycated haemoglobin were measured. Nitrotyrosine was detected by ELISA with a detection limit of 10 nmol/l.. Nitrotyrosine was found in the plasma of all diabetic patients (means +/- SD = 0.251 +/- 0.141 micromol/l), whereas it was not detectable in the plasma of healthy control subjects. Nitrotyrosine plasma values were correlated with plasma glucose concentrations (r = 0.38, p < 0.02) but not with total antioxidant parameter or glycated haemoglobin. Total antioxidant parameter was reduced in diabetic patients (p < 0.01).. The presence of nitrotyrosine in the plasma of diabetic patients indicates that peroxynitrite is generated in diabetes, suggesting a possible involvement of peroxynitrite in the development of diabetic complications. Topics: Antioxidants; Biomarkers; Blood Glucose; Diabetes Mellitus, Type 2; Enzyme-Linked Immunosorbent Assay; Female; Humans; Male; Middle Aged; Oxidative Stress; Reference Values; Sensitivity and Specificity; Tyrosine | 2001 |
Myocardial cell death in human diabetes.
The renin-angiotensin system is upregulated with diabetes, and this may contribute to the development of a dilated myopathy. Angiotensin II (Ang II) locally may lead to oxidative damage, activating cardiac cell death. Moreover, diabetes and hypertension could synergistically impair myocardial structure and function. Therefore, apoptosis and necrosis were measured in ventricular myocardial biopsies obtained from diabetic and diabetic-hypertensive patients. Accumulation of a marker of oxidative stress, nitrotyrosine, and Ang II labeling were evaluated quantitatively. The diabetic heart showed cardiac hypertrophy, cavitary dilation, and depressed ventricular performance. These alterations were more severe with diabetes and hypertension. Diabetes was characterized by an 85-fold, 61-fold, and 26-fold increase in apoptosis of myocytes, endothelial cells, and fibroblasts, respectively. Apoptosis in cardiac cells did not increase additionally with diabetes and hypertension. Diabetes increased necrosis by 4-fold in myocytes, 9-fold in endothelial cells, and 6-fold in fibroblasts. However, diabetes and hypertension increased necrosis by 7-fold in myocytes and 18-fold in endothelial cells. Similarly, Ang II labeling in myocytes and endothelial cells increased more with diabetes and hypertension than with diabetes alone. Nitrotyrosine localization in cardiac cells followed a comparable pattern. In spite of the difference in the number of nitrotyrosine-positive cells with diabetes and with diabetes and hypertension, apoptosis and necrosis of myocytes, endothelial cells, and fibroblasts were detected only in cells containing this modified amino acid. In conclusion, local increases in Ang II with diabetes and with diabetes and hypertension may enhance oxidative damage, activating cardiac cell apoptosis and necrosis. Topics: Angiotensin II; Apoptosis; Cardiomegaly; Diabetes Mellitus, Type 2; Female; Heart Failure; Humans; Hypertension; Male; Middle Aged; Oxidative Stress; Reactive Oxygen Species; Renin-Angiotensin System; Tyrosine | 2000 |