3-nitrotyrosine has been researched along with Depressive-Disorder--Major* in 2 studies
2 other study(ies) available for 3-nitrotyrosine and Depressive-Disorder--Major
Article | Year |
---|---|
A longitudinal study of neurotrophic, oxidative, and inflammatory markers in first-onset depression in midlife women.
Prospective studies have shown during the years preceding and following menopause, also known as "menopause transition", that midlife women are at higher risk for developing first-onset major depressive disorder (MDD). The biological factors associated with risk and resilience in this population are, however, largely unknown. Considering the growing body of evidence suggesting that inflammation, oxidative stress, and brain-derived neurotrophic factor (BDNF) are associated with the pathophysiology of MDD, we investigated serum levels of protein carbonyl, lipid peroxidation (thiobarbituric acid reactive substances-TBARS), thiol group content, BDNF, 3-nitrotyrosine, and heat shock protein 70 (HSP70) in a longitudinal cohort of first-onset MDD. One hundred and forty-eight women from the Harvard Study of Moods and Cycles, a prospective study of midlife women monitored throughout the transition to menopause, were studied. Within- and between-groups analyses of these peripheral markers were conducted in 37 women who developed and 111 women that did not develop MDD during the 3-year follow-up period. In women who developed MDD, HSP70 and 3-nitrotyrosine were elevated at baseline, whereas TBARS were elevated 6 months prior to development of MDD, as compared to those who did not develop MDD. Within-group analyses showed that HSP70, 3-nitrotyrosine, and BDNF decreased over time, whereas protein carbonyl was elevated only at 12 months prior to development of MDD. In women who did not develop MDD, HSP70 and thiol decreased over time. The development of MDD in midlife women may be associated with a systemic cascade of pro-oxidative and pro-inflammatory events including increased HSP70, 3-nitrotyrosine, protein carbonyl, and lipid peroxidation and decreased BDNF. Topics: Adult; Brain-Derived Neurotrophic Factor; Cytokines; Depressive Disorder, Major; Female; HSP70 Heat-Shock Proteins; Humans; Inflammation; Lipid Peroxidation; Longitudinal Studies; Middle Aged; Oxidative Stress; Protein Carbamylation; Psychiatric Status Rating Scales; Surveys and Questionnaires; Thiobarbituric Acid Reactive Substances; Tyrosine | 2018 |
Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder.
Accumulating evidence suggests that mitochondrial dysfunction and oxidative stress contribute to the pathogenesis of bipolar disorder and schizophrenia. It remains unclear whether mitochondrial dysfunction, specifically complex I impairment, is associated with increased oxidative damage and, if so, whether this relationship is specific to bipolar disorder.. To evaluate whether decreased levels of the electron transport chain complex I subunit NDUFS7 are associated with complex I activity and increased oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder, schizophrenia, or major depressive disorder.. Postmortem prefrontal cortex from patients and controls were assessed using immunoblotting, spectrophotometric, competitive enzyme immunoassay to identify group differences in expression and activity of complex I, and in oxidative damage in mitochondria.. University of British Columbia, Vancouver, Canada. Patients Forty-five patients with a psychiatric disorder (15 each with bipolar disorder, schizophrenia, and major depressive disorder) and 15 nonpsychiatric control subjects were studied.. Oxidative damage to proteins and mitochondrial complex I activity.. Levels of NDUFS7 and complex I activity were decreased significantly in patients with bipolar disorder but were unchanged in those with depression and schizophrenia compared with controls. Protein oxidation, as measured by protein carbonylation, was increased significantly in the bipolar group but not in the depressed or schizophrenic groups compared with controls. We observed increased levels of 3-nitrotyrosine in the bipolar disorder and schizophrenia groups.. Impairment of complex I may be associated with increased protein oxidation and nitration in the prefrontal cortex of patients with bipolar disorder. Therefore, complex I activity and mitochondrial dysfunction may be potential therapeutic targets for bipolar disorder. Topics: Adult; Aged; Antipsychotic Agents; Bipolar Disorder; Depressive Disorder, Major; Electron Transport Complex I; Female; Humans; Male; Middle Aged; Mitochondrial Proteins; NADH Dehydrogenase; Oxidative Stress; Prefrontal Cortex; Schizophrenia; Tyrosine | 2010 |