3-nitrotyrosine has been researched along with Cocarcinogenesis* in 2 studies
2 other study(ies) available for 3-nitrotyrosine and Cocarcinogenesis
Article | Year |
---|---|
A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice.
We investigated the effects of a gamma-tocopherol-rich mixture of tocopherols (gamma-TmT, containing 57% gamma-T, 24% delta-T, and 13% alpha-T) on colon carcinogenesis in azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. In experiment 1, 6-week-old male CF-1 mice were given a dose of AOM (10 mg/kg body weight, i.p.), and 1 week later, 1.5% DSS in drinking water for 1 week. The mice were maintained on either a gamma-TmT (0.3%)-enriched or a standard AIN93M diet, starting 1 week before the AOM injection, until the termination of experiment. In the AOM/DSS-treated mice, dietary gamma-TmT treatment resulted in a significantly lower colon inflammation index (52% of the control) on day 7 and number of colon adenomas (9% of the control) on week 7. gamma-TmT treatment also resulted in higher apoptotic index in adenomas, lower prostaglandin E2, leukotriene B4, and nitrotyrosine levels in the colon, and lower prostaglandin E2, leukotriene B4, and 8-isoprostane levels in the plasma on week 7. Some of the decreases were observed even on day 7. In experiment 2 with AOM/DSS- treated mice sacrificed on week 21, dietary 0.17% or 0.3% gamma-TmT treatment, starting 1 week before the AOM injection, significantly inhibited adenocarcinoma and adenoma formation in the colon (to 17-33% of the control). Dietary 0.3% gamma-TmT that was initiated after DSS treatment also exhibited a similar inhibitory activity. The present study showed that gamma-TmT effectively inhibited colon carcinogenesis in AOM/DSS-treated mice, and the inhibition may be due to the apoptosis-inducing, anti-inflammatory, antioxidative, and reactive nitrogen species-trapping activities of tocopherols. Topics: Adenocarcinoma; Adenoma; Animals; Antioxidants; Apoptosis; Azoxymethane; Carcinogens; Cell Transformation, Neoplastic; Cocarcinogenesis; Colon; Colonic Neoplasms; Dextran Sulfate; Dinoprost; Dinoprostone; Dose-Response Relationship, Drug; gamma-Tocopherol; Inflammation; Leukotriene B4; Male; Mice; Tyrosine | 2009 |
Dose-dependent promoting effect of dextran sodium sulfate on mouse colon carcinogenesis initiated with azoxymethane.
We previously reported a powerful tumor-promoting ability of dextran sodium sulfate (DSS) in a novel mouse model for colitis-related colon carcinogenesis initiated with azoxymethane (AOM). To determine the dose-dependent influence of DSS in our animal model, male ICR mice were given a single intraperitoneal injection of AOM (10 mg/kg body weight), followed by DSS at dose levels of 2, 1, 0.5, 0.25, and 0.1% (w/v) in drinking water for 1 week. All animals were sacrificed at week 14 and histological alterations in their colon and nitrotyrosine immunohistochemistry were examined to evaluate the nitrosative stress. In the mice which received AOM and 2% DSS, the incidences (multiplicity) of colonic tubular adenoma and adenocarcinoma were 75% (1.25+/-1.26/mouse) and 100% (2.75+/-2.22/mouse), respectively. Mice given AOM and 1% DSS had 80% incidence of adenoma (1.00+/-0.71/mouse) and 60% incidence of adenocarcinoma (1.40+/-2.07/mouse) in the colon. In a mouse treated with AOM and 0.5% DSS, only one colonic adenoma (20% incidence with 0.20+/-0.45 multiplicity) developed. Higher frequency of high-grade colonic dysplasia was noted in mice given AOM and 2% or 1% DSS when compared with mice treated with AOM and lower doses of DSS. Also, scoring of inflammation and nitrotyrosine immunoreactivity suggested that severe inflammation and nitrosation stress caused by high-doses (2% and 1%) of DSS contribute its tumor-promoting effects in mouse colon carcinogenesis initiated with a low dose of AOM. Thus, our findings indicate that a tumor-promoting effect of DSS was dose-dependent (1% or more) and the effect might occur under the condition of inflammation and nitrosation stress. Topics: Animals; Azoxymethane; Carcinogens; Cocarcinogenesis; Colitis; Colonic Diseases; Colonic Neoplasms; Dextran Sulfate; Dose-Response Relationship, Drug; Intestinal Mucosa; Male; Mice; Mice, Inbred ICR; Tyrosine; Ulcer | 2005 |