3-nitrotyrosine has been researched along with Cerebral-Hemorrhage* in 8 studies
8 other study(ies) available for 3-nitrotyrosine and Cerebral-Hemorrhage
Article | Year |
---|---|
Lipopolysaccharide Induces Subacute Cerebral Microhemorrhages with Involvement of Nitric Oxide Synthase in Rats.
Cerebral microhemorrhage (CMH) is a neuropathological term that could be easily found in cerebral amyloid angiopathy, intracerebral hemorrhages, etc. CMHs could be detected clearly in vivo by magnetic resonance imaging (MRI)-susceptibility-weighted imaging or MRI T2* scan. This terminology is now accepted in the area of neuroimaging. CMHs are quite common in elderly patients and are associated with several other neuropsychiatric disorders. The causes of CMHs are complicated, and neuroinflammation is considered as one of the well-accepted mechanical factors. This study investigated whether lipopolysaccharide (LPS)-induced CMHs occur through the regulation of nitric oxide synthase (NOS) isoforms and reveals the exact underlying mechanism of LPS-induced CMHs.. Our work successfully developed a subacute model of CMHs in rats. LPS was intraperitoneally injected into rats at 0, 6, and 24 hours, which induced typical CMH features 7 days after the injection. These could be detected on the brain surface or parenchyma by hematoxylin and eosin staining and MRI.. LPS-treated rats showed significant activation of astrocytes and microglia, as well as loss of pericytes and disruption of blood-brain barrier. Meanwhile, both astrocytes and microglia were positively correlated with CMH numbers. Furthermore, the expressions of NOS isoforms were also examined, and the levels of neuronal NOS and endothelial NOS were found to be elevated.. These results implied that the NOS isoforms might be involved in the subacute model of CMHs in rats induced by LPS. Topics: Animals; Brain; Capillary Permeability; Cerebral Hemorrhage; Disease Models, Animal; Inflammation; Isoenzymes; Lipopolysaccharides; Male; Microglia; Neuroimmunomodulation; Neurons; Nitric Oxide Synthase; Rats, Sprague-Dawley; Tyrosine | 2018 |
Tempol alleviates intracerebral hemorrhage-induced brain injury possibly by attenuating nitrative stress.
Intracerebral hemorrhage (ICH)-induced brain injury leads to irreversible disruption of the blood-brain barrier (BBB) and fatality brain edema with massive cell death. Although secondary damage could, in principle, be preventable, no effective treatment approaches currently exist for patients with ICH. Tempol, a catalytic scavenger of peroxynitrite (ONOO)-derived free radicals, has been proven to ameliorate brain injury in several types of brain insults. This study aims to investigate the potential neuroprotective effect of tempol after ICH and to explore the underlying mechanisms. Collagenase-induced ICH was performed in rats. Tempol was administered immediately after ICH. The effects of tempol on ICH were evaluated by assessing neurological deficits, BBB permeability, brain edema, and apoptotic cell death. The mechanisms of action of tempol, with its clear ability on the derivative of ONOO [3-nitrotyrosine (3-NT), ONOO, and its derivative-mediated nitration marker] and expression of tight junction protein [zonula occludens-1 (ZO-1)], were also investigated. Perihematomal 3-NT increased significantly following ICH and expressed around vessels accompanied by reduced and discontinuous expression of ZO-1. Tempol treatment significantly suppressed 3-NT formation and preserved ZO-1 levels, and led to improvement in neurological outcomes and reduction of BBB leakiness, brain edema, and apoptosis. In conclusion, tempol has neuroprotective potential in experimental ICH and may help combat ICH-induced brain injury in patients. Topics: Animals; Antioxidants; Apoptosis; Blood-Brain Barrier; Brain; Brain Edema; Brain Injuries; Cerebral Hemorrhage; Collagenases; Cyclic N-Oxides; Disease Models, Animal; Male; Neuroprotective Agents; Random Allocation; Rats, Sprague-Dawley; Spin Labels; Tyrosine; Zonula Occludens-1 Protein | 2015 |
Blood-brain barrier disruption induced by hemoglobin in vivo: Involvement of up-regulation of nitric oxide synthase and peroxynitrite formation.
Accumulating evidence has demonstrated that up-regulation of nitric oxide synthase (NOS) and subsequent peroxynitrite (ONOO(-)) formation exert a devastating effect on the damage of BBB in multiple diseases. However, considerably less attention has been focused on the role of NOS/ONOO(-) in BBB disruption after intracerebral hemorrhage (ICH). Using an experimental stroke model by injecting hemoglobin (Hb) into the caudate nucleus of male Sprague Dawley rats, we explored the role of NOS/ONOO(-) in BBB disruption after ICH. Brain edema content, behavioral changes, alterations of TJ proteins (claudin-5 and ZO-1), expression of neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS), formation of 3-nitrotyrosine (3-NT), as well as NO production were investigated. Hb in the rat brain led to a significant brain edema production and neurological deficits. Overexpressed NOS was concomitant with large quantities of 3-NT formation. Moreover, sites of enhanced nNOS, iNOS, eNOS and 3-NT immunoreactivity were colocalized with diminished or discontinuous ZO-1 and/or claudin-5 staining as evidenced by Western blot and immunofluorescence, indicating the involvement of NOS and ONOO(-) in the BBB disruption. Meaningfully, levels of 3-NT in serum, which had a similar tendency with that of in brain tissues (r=0.934, P<0.001), had a marked correlation with brain edema content (r=0.782, P<0.001) and neurological deficits (r=0.851, P<0.001). We concluded that ONOO(-) formation by the upregulation of NOS may play a central role in promoting the BBB damage following ICH. Moreover, ONOO(-) may be a promising biomarker for the judgment or prediction of brain injury and clinical prognosis after ICH. Topics: Analysis of Variance; Animals; Blood-Brain Barrier; Brain Edema; Cerebral Hemorrhage; Claudin-5; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Hemoglobins; Male; Motor Activity; Nitric Oxide; Nitric Oxide Synthase; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Time Factors; Tyrosine; Up-Regulation; Zonula Occludens-1 Protein | 2014 |
Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model.
Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation. Topics: Administration, Inhalation; Aldehydes; Animals; Antioxidants; Aquaporin 4; Brain Damage, Chronic; Cerebral Hemorrhage; Disease Progression; Drug Evaluation, Preclinical; Extracellular Matrix Proteins; Glucose; Hydrogen; Hyperglycemia; Infarction, Middle Cerebral Artery; Male; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Neuroprotective Agents; Random Allocation; Rats; Rats, Sprague-Dawley; Tyrosine | 2010 |
Reduced brain injury in CD18-deficient mice after experimental intracerebral hemorrhage.
Many studies have indicated leukocytes are a major contributor to brain injuries caused by intracerebral hemorrhage (ICH). Leukocyte-expressed CD18 is important for neutrophil-endothelial interactions in the vasculature, and CD18 deficiency protects against ischemia-reperfusion injury. We investigated whether CD18 deficiency provides protection against ICH-induced brain injury. Male wild-type (WT) CD18(+/+) mice and CD18(-/-) -knockout mice were used in this study. ICH was induced by a collagenase injection. Mortality, neurological function, brain edema, and myeloperoxidase (MPO) activity as well as tissue expression of nitrotyrosine and MPO were evaluated 24 hr after ICH. We discovered significantly reduced brain edema and diminished mortality with a concomitant decrease in MPO and nitrotyrosine immunoreactivity in brains of CD18-knockout mice. Topics: Animals; Brain Edema; CD18 Antigens; Cerebral Hemorrhage; Immunohistochemistry; Male; Mice; Mice, Knockout; Peroxidase; Reperfusion Injury; Tyrosine | 2008 |
Heme oxygenase 2 deficiency increases brain swelling and inflammation after intracerebral hemorrhage.
Intracerebral hemorrhage (ICH) remains a major medical problem and currently has no effective treatment. Hemorrhaged blood is highly toxic to the brain, and catabolism of the pro-oxidant heme, mainly released from hemoglobin, is critical for the resolution of hematoma after ICH. The degradation of the pro-oxidant heme is controlled by heme oxygenase (HO). We have previously reported a neuroprotective role for HO2 in early brain injury after ICH; however, in vivo data that specifically address the role of HO2 in brain edema and neuroinflammation after ICH are absent. Here, we tested the hypothesis that HO2 deletion would exacerbate ICH-induced brain edema, neuroinflammation, and oxidative damage. We subjected wild-type (WT) and HO2 knockout ((-/-)) mice to the collagenase-induced ICH model. Interestingly, HO2(-/-) mice had enhanced brain swelling and neuronal death, although HO2 deletion did not increase collagenase-induced bleeding; the exacerbation of brain injury in HO2(-/-) mice was also associated with increases in neutrophil infiltration, microglial/macrophage and astrocyte activation, DNA damage, peroxynitrite production, and cytochrome c immunoreactivity. In addition, we found that hemispheric enlargement was more sensitive than brain water content in the detection of subtle changes in brain edema formation in this model. Combined, these novel findings extend our previous observations and demonstrate that HO2 deficiency increases brain swelling, neuroinflammation, and oxidative damage. The results provide additional evidence that HO2 plays a critical protective role against ICH-induced early brain injury. Topics: Analysis of Variance; Animals; Brain Edema; Calcium-Binding Proteins; Cerebral Hemorrhage; Cytochromes c; Disease Models, Animal; Encephalitis; Fluoresceins; Functional Laterality; Glial Fibrillary Acidic Protein; Granulocyte Colony-Stimulating Factor; Heme Oxygenase (Decyclizing); Interleukin-3; Mice; Mice, Inbred C57BL; Mice, Knockout; Microfilament Proteins; Nerve Degeneration; Organic Chemicals; Recombinant Fusion Proteins; Recombinant Proteins; Spectrophotometry; Time Factors; Tyrosine | 2008 |
Role of oxidative stress on pathogenesis of hypertensive cerebrovascular lesions.
The hypertensive rat brain exhibited softening, severe edema and intracerebral hemorrhage. The NO(2) (-) + NO(3) (-) (NOx) level in the hypertensive rat brain was higher than in the normotensive rat brain. Light microscopy demonstrated severe arterial and arteriolar lesions with fibrinoid deposits and medial lesion. After injecting hypertensive rats with nitroblue tetrazolium (NBT), formazan deposits, which are the reaction product of reduction of NBT by superoxide, were observed in the microvessels and nervous tissue around the microvessels of injured brain. Immunohistochemistry showed that copper zinc superoxide dismutase and manganese superoxide dismutase expression of the endothelial cells of hypertensive rats were also upregulated in comparison with normotensive rat endothelial cells. Inducible nitric oxide synthase and endothelial nitric oxide synthase expression in endothelial cells of normotensive rats were strongly positive, whereas the expression in hypertensive rat endothelial cells was weaker. Nitrotyrosine, a biomarker of peroxynitrite, which is a powerful oxidant formed by the reaction of nitric oxide (NO) with superoxide, was found in the microvessels, injured arteries and arterioles and infarcted brain tissue. Deposition of a major aldehydic product of lipid peroxidation, that is, 4-hydroxy-2-nonenal (4-HNE) was found in microvessels, perivascular tissue, and edematous and infarcted brain. Hypertensive cerebrovascular disease is the result of hypertension-induced oxidative stress. Topics: Aldehydes; Animals; Arterioles; Brain; Brain Edema; Cerebral Hemorrhage; Cerebrovascular Disorders; Disease Models, Animal; Endothelium, Vascular; Hypertension; Intracranial Arterial Diseases; Male; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Nitroblue Tetrazolium; Oxidative Stress; Rats; Rats, Wistar; Superoxide Dismutase; Tyrosine; Up-Regulation | 2007 |
Intracerebral hemorrhage elicits aberration in cardiomyocyte contractile function and intracellular Ca2+ transients.
The sequelae of intracerebral hemorrhage involve multiple organ damage including electrocardiographic alteration, although the mechanism(s) behind myocardial dysfunction is unknown. The aim of this study was to examine the impact of intracerebral hemorrhage on cardiomyocyte contractile function, intracellular Ca2+ handling, Ca2+ cycling proteins, I kappa B beta protein (IkappaB) phosphorylation, hypoxia-inducible factor 1alpha (HIF-1alpha), and nitrosative damage within 48 hours of injury.. Mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), and intracellular Ca2+ decay.. Myocytes from intracerebral hemorrhage rats exhibited depressed PS, +/-dL/dt, prolonged TPS and TR90, as well as declined baseline FFI and slowed intracellular Ca2+ decay between 12 and 24 hours after injury. Most of these aberrations returned to normal levels 48 hours after hemorrhage with the exception of -dL/dt and TR90. Myocytes from 24-hour posthemorrhage rats exhibited a stepper negative staircase in PS with increased stimulus frequency. Cardiac expression of sarco(endo)plasmic reticulum Ca2+-ATPase 2a and phospholamban was enhanced, whereas that of Na+-Ca2+ exchanger and voltage-dependent K+ channel was decreased. IkappaB phosphorylation, HIF-1alpha, inducible NO synthase, and 3-nitrotyrosine were enhanced 12 hours after injury.. These data demonstrated that intracerebral hemorrhage initiates cardiomyocyte contractile and intracellular Ca2+ dysregulation possibly related to altered expression of Ca2+ cycling proteins, nitrosative damage, and myocardial phosphorylation of IkappaB. Topics: Animals; Calcium Signaling; Calcium-Binding Proteins; Calcium-Transporting ATPases; Cerebral Hemorrhage; Collagenases; Female; Gene Expression Regulation; Heart Diseases; Hypoxia-Inducible Factor 1, alpha Subunit; I-kappa B Proteins; Kv1.2 Potassium Channel; Myocardial Contraction; Myocytes, Cardiac; Nitric Oxide Synthase Type II; Phosphorylation; Protein Processing, Post-Translational; Rats; Rats, Sprague-Dawley; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Sodium-Calcium Exchanger; Time Factors; Tyrosine | 2006 |