3-nitrotyrosine and Burns

3-nitrotyrosine has been researched along with Burns* in 10 studies

Other Studies

10 other study(ies) available for 3-nitrotyrosine and Burns

ArticleYear
Omega-7 oil increases telomerase activity and accelerates healing of grafted burn and donor site wounds.
    Scientific reports, 2021, 01-13, Volume: 11, Issue:1

    This study investigated the efficacy of Omega-7 isolated from the sea buckthorn oil (Polyvit Co., Ltd, Gangar Holding, Ulaanbaatar, Mongolia) in ovine burn wound healing models. In vitro, proliferation (colony-forming rate) and migration (scratch) assays using cultured primary ovine keratinocytes were performed with or without 0.025% and 0.08% Omega-7, respectively. The colony-forming rate of keratinocytes in the Omega-7 group at 72 and 96 h were significantly higher than in the control (P < 0.05). The percentage of closure in scratch assay in the Omega-7 group was significantly higher than in the control at 17 h (P < 0.05). In vivo, efficacy of 4% Omega-7 isolated from buckthorn oil was assessed at 7 and 14 days in grafted ovine burn and donor site wounds. Telomerase activity, keratinocyte growth factor, and wound nitrotyrosine levels were measured at day 14. Grafted sites: Un-epithelialized raw surface area was significantly lower and blood flow was significantly higher in the Omega-7-treated sites than in control sites at 7 and 14 days (P < 0.05). Telomerase activity and levels of keratinocyte growth factors were significantly higher in the Omega-7-treated sites after 14 days compared to those of control (P < 0.05). The wound 3-nitrotyrosine levels were significantly reduced by Omega-7. Donor sites: the complete epithelialization time was significantly shorter and blood flow at day 7 was significantly higher in the Omega-7-treated sites compared to control sites (P < 0.05). In summary, topical application of Omega-7 accelerates healing of both grafted burn and donor site wounds. Omega-7 should be considered as a cost-efficient and effective supplement therapy for burn wound healing.

    Topics: 3T3 Cells; Animals; Burns; Cell Line; Cell Movement; Cell Proliferation; Disease Models, Animal; Female; Fish Oils; Hippophae; Keratinocytes; Mice; Re-Epithelialization; Sheep; Telomerase; Tyrosine; Wound Healing

2021
Beneficial pulmonary effects of a metalloporphyrinic peroxynitrite decomposition catalyst in burn and smoke inhalation injury.
    American journal of physiology. Lung cellular and molecular physiology, 2011, Volume: 300, Issue:2

    During acute lung injury, nitric oxide (NO) exerts cytotoxic effects by reacting with superoxide radicals, yielding the reactive nitrogen species peroxynitrite (ONOO(-)). ONOO(-) exerts cytotoxic effects, among others, by nitrating/nitrosating proteins and lipids, by activating the nuclear repair enzyme poly(ADP-ribose) polymerase and inducing VEGF. Here we tested the effect of the ONOO(-) decomposition catalyst INO-4885 on the development of lung injury in chronically instrumented sheep with combined burn and smoke inhalation injury. The animals were randomized to a sham-injured group (n = 7), an injured control group [48 breaths of cotton smoke, 3rd-degree burn of 40% total body surface area (n = 7)], or an injured group treated with INO-4885 (n = 6). All sheep were mechanically ventilated and fluid-resuscitated according to the Parkland formula. The injury-related increases in the abundance of 3-nitrotyrosine, a marker of protein nitration by ONOO(-), were prevented by INO-4885, providing evidence for the neutralization of ONOO(-) action by the compound. Burn and smoke injury induced a significant drop in arterial Po(2)-to-inspired O(2) fraction ratio and significant increases in pulmonary shunt fraction, lung lymph flow, lung wet-to-dry weight ratio, and ventilatory pressures; all these changes were significantly attenuated by INO-4885 treatment. In addition, the increases in IL-8, VEGF, and poly(ADP-ribose) in lung tissue were significantly attenuated by the ONOO(-) decomposition catalyst. In conclusion, the current study suggests that ONOO(-) plays a crucial role in the pathogenesis of pulmonary microvascular hyperpermeability and pulmonary dysfunction following burn and smoke inhalation injury in sheep. Administration of an ONOO(-) decomposition catalyst may represent a potential treatment option for this injury.

    Topics: Animals; Burns; Capillary Permeability; Catalysis; Disease Models, Animal; Female; Hemodynamics; Interleukin-8; Lung; Metalloporphyrins; Peroxidase; Peroxynitrous Acid; Poly(ADP-ribose) Polymerases; Pulmonary Circulation; Sheep; Smoke Inhalation Injury; Tyrosine; Vascular Endothelial Growth Factor A

2011
Mechanistic aspects of inducible nitric oxide synthase-induced lung injury in burn trauma.
    Burns : journal of the International Society for Burn Injuries, 2011, Volume: 37, Issue:4

    Although the beneficial effects of inducible nitric oxide synthase (iNOS) inhibition in acute lung injury secondary to cutaneous burn and smoke inhalation were previously demonstrated, the mechanistic aspects are not completely understood. The objective of the present study is to describe the mechanism(s) underlying these favourable effects. We hypothesised that iNOS inhibition prevents formation of excessive reactive nitrogen species and attenuates the activation of poly(ADP) (poly(adenosine diphosphate)) ribose polymerase, thus mitigating the severity of acute lung injury in sheep subjected to combined burn and smoke inhalation.. Adult ewes were chronically instrumented for a 24-h study and allocated to groups: sham: not injured, not treated, n = 6; control: injured, not treated, n = 6; and BBS-2: injured treated with iNOS dimerisation inhibitor BBS-2, n = 6. Control and BBS-2 groups received 40% total body surface area 3rd-degree cutaneous burn and cotton smoke insufflation into the lungs under isoflurane anaesthesia.. Treatment with iNOS inhibitor BBS-2 significantly improved pulmonary gas exchange (partial pressure of oxygen in the blood/fraction of inspired oxygen (PaO₂/FiO₂) 409 ± 43 mmHg vs. 233 ± 50 mmHg in controls, p < 0.05) and reduced airway pressures (peak pressure 20 ± 1 cm H₂O vs. 28 ± 2 cm H₂O in controls, p < 0.05) and lung water content (lung wet-to-dry ratio 4.1 ± 0.3 vs. 5.2 ± 0.2 in controls, p < 0.05) 24h after the burn and smoke injury. BBS-2 significantly reduced the increases in lung lymph nitrite/nitrate (10 ± 3 μM vs. 26 ± 6 μM in controls, p < 0.05) and 3-nitrotyrosine (109 ± 11 (densitometry value) vs. 151 ± 18 in controls, p < 0.05). Burn/smoke-induced increases in lung tissue nitrite/nitrate, poly(ADP)ribose polymerase, nuclear factor-κB (NF-κB) activity, myeloperoxidase activity and malondialdehyde formation and interleukin (IL)-8 expression were also attenuated with BBS-2.. The results provide strong evidence that BBS-2 ameliorated acute lung injury by inhibiting the inducible nitric oxide synthase/reactive nitrogen species/poly(ADP-ribose) polymerase (iNOS/RNS/PARP) pathway.

    Topics: Analysis of Variance; Animals; Burns; Disease Models, Animal; Female; Imidazoles; Immunohistochemistry; Interleukin-8; Lung; Malondialdehyde; NF-kappa B; Nitric Oxide Synthase Type II; Peroxidase; Piperazines; Pulmonary Gas Exchange; Pyrimidines; RNA, Messenger; Sheep; Smoke Inhalation Injury; Tyrosine

2011
L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep.
    Shock (Augusta, Ga.), 2007, Volume: 28, Issue:4

    Thermal injury results in reduced plasma levels of arginine (Arg). With reduced Arg availability, NOS produces superoxide instead of NO. We hypothesized that Arg supplementation after burn and smoke inhalation (B + S) injury would attenuate the acute insult to the lungs and, thus, protect pulmonary function. Seventeen Suffolk ewes (n = 17) were randomly divided into three groups: (1) sham injury group (n = 6), (2) B + S injury plus saline treatment (n = 6), and (3) B + S injury plus L-ARG infusion at 57 mg.kg(-1).h(-1) (n = 5). Burn and smoke inhalation injury was induced by standardized procedures, including a 40% area full thickness flame burn combined with 48 breaths of smoke from burning cottons. All animals were immediately resuscitated by Ringer solution and supported by mechanical ventilation for 48 h, during which various variables of pulmonary function were monitored. The results demonstrated that Arg treatment attenuated the decline of plasma Arg concentration after B + S injury. A higher plasma Arg concentration was associated with a less decline in Pao2/Fio2 ratio and a reduced extent of airway obstruction after B + S injury. Histopathological examinations also indicated a remarkably reduced histopathological scores associated with B + S injury. Nitrotyrosine stain in lung tissue was positive after B + S injury, but was significantly reduced in the group with Arg. Therefore, L-Arg supplementation improved gas exchange and pulmonary function in ovine after B + S injury via its, at least in part, effect on reduction of oxidative stress through the peroxynitrite pathway.

    Topics: Airway Obstruction; Animals; Arginine; Blood Pressure; Burns; Female; Hematocrit; Lung; Lung Injury; Nitrates; Nitrites; Random Allocation; Sheep; Smoke Inhalation Injury; Survival Analysis; Tyrosine; Urination

2007
Combined burn and smoke inhalation injury impairs ovine hypoxic pulmonary vasoconstriction.
    Critical care medicine, 2006, Volume: 34, Issue:5

    To examine the effects of combined burn and smoke inhalation injury on hypoxic pulmonary vasoconstriction, 3-nitrotyrosine formation, and respiratory function in adult sheep.. Prospective, placebo-controlled, randomized, single-blinded trial.. University research laboratory.. Twelve chronically instrumented ewes.. Following a baseline measurement, sheep were randomly allocated to either healthy controls (sham) or the injury group, subjected to a 40%, third-degree body surface area burn and 48 breaths of cotton smoke according to an established protocol (n = 6 each). Hypoxic pulmonary vasoconstriction was assessed as changes in pulmonary arterial blood flow (corrected for changes in cardiac index) in response to left lung hypoxic challenges performed at baseline and at 24 and 48 hrs postinjury.. Combined burn and smoke inhalation was associated with increased expression of inducible nitric oxide (NO) synthase, elevated NO2/NO3 (NOx) plasma levels (12 hrs, sham, 6.2 +/- 0.6; injury, 16 +/- 1.6 micromol.L; p < .01) and increased peroxynitrite formation, as indicated by augmented lung tissue 3-nitrotyrosine content (30 +/- 3 vs. 216 +/- 8 nM; p < .001). These biochemical changes occurred in parallel with pulmonary shunting, progressive decreases in Pao2/Fio2 ratio, and a loss of hypoxic pulmonary vasoconstriction (48 hrs, -90.5% vs. baseline; p < .001). Histopathology revealed pulmonary edema and airway obstruction as the morphologic correlates of the deterioration in gas exchange and the increases in airway pressures.. This study provides evidence for a severe impairment of hypoxic pulmonary vasoconstriction following combined burn and smoke inhalation injury. In addition to airway obstruction, the loss of hypoxic pulmonary vasoconstriction may help to explain why blood gases are within physiologic ranges for a certain time postinjury and then suddenly deteriorate.

    Topics: Animals; Burns; Female; Hypoxia; Lung; Multiple Trauma; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Pulmonary Gas Exchange; Random Allocation; Respiratory Distress Syndrome; Sheep; Single-Blind Method; Smoke Inhalation Injury; Survival Analysis; Tyrosine; Vasoconstriction

2006
Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury.
    Redox report : communications in free radical research, 2006, Volume: 11, Issue:2

    A decrease in alpha-tocopherol (vitamin E) plasma levels in burn patients is typically associated with increased mortality. We hypothesized that vitamin E supplementation (alpha-tocopherol) would attenuate acute lung injury induced by burn and smoke inhalation injury.. Under deep anesthesia, sheep (33 +/- 5 kg) were subjected to a flame burn (40% total body surface area, third degree) and inhalation injury (48 breaths of cotton smoke, < 40 degrees C). Half of the injured group received alpha-tocopherol (1000 IU vitamin E) orally, 24 h prior to injury. The sham group was neither injured nor given vitamin E. All three groups (n = 5 per group) were resuscitated with Ringer's lactate solution (4 ml/kg/%burn/24 h), and placed on a ventilator (PEEP = 5 cmH2O; tidal volume = 15 ml/kg) for 48 h.. Plasma alpha-tocopherol per lipids doubled in the vitamin E treated sheep. Vitamin E treatment prior to injury largely prevented the increase in pulmonary permeability index and moderated the increase in lung lymph flow (52.6 +/- 6.2 ml/min, compared with 27.3 +/- 6.0 ml/min, respectively), increased the PaO2/FiO2 ratio, ameliorated both peak and pause airway pressure increases, and decreased plasma conjugated dienes and nitrotyrosine.. Pretreatment with vitamin E ameliorated the acute lung injury caused by burn and smoke inhalation exposure.

    Topics: Acute Disease; alpha-Tocopherol; Animals; Antioxidants; Burns; Disease Models, Animal; Extravascular Lung Water; gamma-Tocopherol; Lipids; Lung; Lung Injury; Pulmonary Gas Exchange; Pulmonary Wedge Pressure; Sheep; Smoke Inhalation Injury; Tyrosine

2006
Protective effect of trapidil against oxidative organ damage in burn injury.
    Burns : journal of the International Society for Burn Injuries, 2005, Volume: 31, Issue:7

    Animal models of thermal injury indicate reactive oxygen species and inflammatory cytokines as causative agents in tissue injury on various organs distant from the original wound. Trapidil has various properties, such as inhibition of platelet aggregation and lipid peroxidation as well as reduction of the inflammatory response to injury. This study was designed to determine the possible protective effect of trapidil treatment against oxidative organ damage in lung, intestine and kidney induced by cutaneous thermal injury. Thirty Wistar rats were randomly divided into five groups. Sham group (n=6) was exposed to 21 degrees C water while burn-3 h group (n=6) and burn+trap-3h group (n=6), burn-24 h (n=6) and burn+trap-24 h groups were exposed to boiling water for 12s to produce a full thickness burn in 35-40% of total body surface area. In both burn+trap-3 h and burn-trap-24 h group, 8 mg/kg trapidil was given intravenously immediately after thermal injury. Three and 24 h later, tissue samples were taken for biochemical analysis from lung, intestine and kidney and blood samples were obtained to determinate serum TNF-alpha levels. Cutaneous thermal injury caused a significant increase in myeloperoxidase (MPO) activity and malondialdehyde (MDA) and 3-nitrotyrozine (3-NT) levels in all tissues and elevated serum TNF-alpha levels at post-burn 3 and 24 h. Trapidil treatment significantly reduced in biochemical parameters, as well as serum TNF-alpha levels. These data suggest that trapidil has a protective effect against oxidative organ damage in burn injury.

    Topics: Animals; Burns; Lipid Peroxidation; Malondialdehyde; Oxidative Stress; Peroxidase; Peroxynitrous Acid; Protective Agents; Random Allocation; Rats; Rats, Wistar; Trapidil; Tumor Necrosis Factor-alpha; Tyrosine

2005
The role of poly(ADP-ribose) synthetase inhibition on the intestinal mucosal barrier after thermal injury.
    Burns : journal of the International Society for Burn Injuries, 2004, Volume: 30, Issue:8

    Oxidative and nitrosative stressor agents can trigger DNA strand breakage, which then activates the nuclear enzyme poly(ADP-ribose) synthetase (PARS). Activation of the enzyme depletes the intracellular concentration of energetic substrates such as nicotinamide adenine dinucleotide (NAD). This process can result in cell dysfunction and cell death. PARS inhibitors have been successfully used in ischemia-reperfusion injury, inflammation and sepsis in several experimental models. In our experimental study, we investigated the role of 3-aminobeanzamide (3-AB), a non-specific PARS inhibitor, on the intestinal mucosal barrier after burn injury. Twenty-four Wistar rats were randomly divided into three groups. The sham group (n = 8) was exposed to 21 degrees C water while the burn group (n = 8) and the burn + 3-AB group (n = 9) were exposed to boiling water for 12s to produce a full thickness burn in 35-40% of total body surface area. In the burn + 3-AB group, 10mg/kg of 3-AB was given intraperitoneally 10min before thermal injury. Twenty-four hours later, tissue samples from mesenteric lymph nodes (MLN), spleen and liver were obtained under sterile conditions for microbiological analysis and ileum samples were obtained for biochemical and histopathological analysis. In burn group, the incidence of bacteria isolated from MLN and spleen was significantly higher than other groups (P < 0.05). 3-AB pre-treatment prevented burn induced bacterial translocation and it significantly reduced burn induced intestinal injury. Tissue malondialdehyde and 3-nitrotyrozine levels were found significantly lower than that of the burn group. These data suggest that the relationship between PARS pathway and lipid peroxidation in intestinal tissue and PARS has a role in intestinal injury caused by thermal injury.

    Topics: Animals; Bacterial Translocation; Benzamides; Burns; Enzyme Inhibitors; Intestinal Mucosa; Intestine, Small; Liver; Lymph Nodes; Malondialdehyde; Mesentery; Poly(ADP-ribose) Polymerase Inhibitors; Random Allocation; Rats; Rats, Wistar; Spleen; Tyrosine

2004
Nitric oxide synthase and tissue injury.
    Shock (Augusta, Ga.), 2000, Volume: 14, Issue:2

    Topics: Alprostadil; Animals; Arginine; Burns; Enzyme Inhibitors; Humans; Ischemia; Luminescent Measurements; Models, Biological; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Oxidative Stress; Reperfusion Injury; Sepsis; Shock; Superoxides; Tyrosine

2000
Specific inhibition of iNOS decreases the intestinal mucosal peroxynitrite level and improves the barrier function after thermal injury.
    Burns : journal of the International Society for Burn Injuries, 1998, Volume: 24, Issue:8

    Failure of GI tract mucosa to act as a barrier against bacterial translocation (BT) has been proposed as a potential source of sepsis and subsequent multiple organ failure post thermal injury. Nitric oxide (NO) is an inorganic radical produced by NO synthase (NOS) from L-arginine. Gut mucosal constitutive NOS (cNOS) provides protection for itself. In contrast to cNOS, inducible NOS (iNOS) releases far greater amounts of NO, promotes oxidative reactions and is responsible for tissue injury. Peroxynitrite formed by the rapid reaction between superoxide and NO, is a toxic substance that contributes to tissue injury in a number of biological systems. This study was designed to investigate the effect of iNOS specific inhibitor S-methylisothiourea (SMT) on the postburn intestinal mucosal barrier function and the possible mechanism of SMT's action. Female SPF Sprague Dawley rats underwent 35% total body surface area (TBSA) or sham burn. Either SMT or the same volume of saline was given (5 mg/kg, i.p. q 12 h) for 2 days to assess the effect of iNOS inhibition. On postburn day 2, the intestinal mucosal cNOS and iNOS activity were assayed by using Griess' reagent, the mesenteric lymph node (MLN), spleen and liver were collected and cultured for BT assay and the cellular localization of nitrotyrosine, a marker for peroxynitrite activity, was examined by immunostaining. After thermal injury in rats, administration of SMT for 2 days decreased the intestinal mucosal iNOS activity/ tNOS activity ratio and the BT incidence. Nitrotyrosine immunostaining of the intestinal mucosa showed a decrease in the SMT-treated group. These findings suggest that SMT, a specific inhibitor for iNOS improves the barrier function after burn by suppression of the intestinal mucosal iNOS activity. The decrease in NO production resulted in decreased formation of peroxynitrite and subsequently decreased damage of mucosal tissue.

    Topics: Animals; Antioxidants; Bacterial Translocation; Body Surface Area; Burns; Coloring Agents; Enzyme Inhibitors; Female; Intestinal Mucosa; Intestine, Small; Isothiuronium; Liver; Lymph Nodes; Nitrates; Nitric Oxide; Nitric Oxide Synthase; Oxidants; Rats; Rats, Sprague-Dawley; Spleen; Superoxides; Tyrosine

1998