3-nitrotyrosine and Bronchitis

3-nitrotyrosine has been researched along with Bronchitis* in 3 studies

Other Studies

3 other study(ies) available for 3-nitrotyrosine and Bronchitis

ArticleYear
Role of metallothionein in antigen-related airway inflammation.
    Experimental biology and medicine (Maywood, N.J.), 2005, Volume: 230, Issue:1

    Metallothionein (MT) is a protein that can be induced by inflammatory mediators and participates in cytoprotection. However, its role in antigen-related inflammation remains to be established. We determined whether intrinsic MT protects against antigen-related airway inflammation induced by ovalbumin (OVA) in MT-I/II null (MT [-/-]) mice and in corresponding wild-type (WT) mice. MT (-/-) mice and WT mice were intratracheally challenged with OVA (1 mug per body) biweekly four times. Twenty-four hours after the last OVA challenge, significant increases were shown in the numbers of total cells, eosinophils, and neutrophils in bronchoalveolar lavage fluid from MT (-/-) mice than in those from WT mice. The protein level of interleukin-1beta (IL-1beta) was significantly greater in MT (-/-) mice than in WT mice after OVA challenge. Immunohistochemical analysis showed that the formations of 8-oxy-deoxyguanosine and nitrotyrosine in the lung were more intense in MT (-/-) mice than in WT mice after OVA challenge. These results indicate that endogenous MT is a protective molecule against antigen-related airway inflammation induced by OVA, at least partly, via the suppression of enhanced lung expression of IL-1beta and via the antioxidative properties. Our findings suggest that MT may be a therapeutic target for the treatment of antigen-related airway inflammatory diseases such as bronchial asthma.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antigens; Bronchitis; Bronchoalveolar Lavage Fluid; Chemokines; Cytokines; Deoxyguanosine; Immunohistochemistry; Metallothionein; Mice; Trachea; Tyrosine

2005
Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease.
    The Journal of allergy and clinical immunology, 2005, Volume: 116, Issue:5

    Reactive nitrogen species, formed via the reaction of nitric oxide (NO) with superoxide anion and via (myelo)peroxidase-dependent oxidation of NO(2)(-), have potent proinflammatory and oxidizing actions. Reactive nitrogen species formation and nitrosative stress are potentially involved in chronic obstructive pulmonary disease (COPD) pathogenesis.. To investigate the expression of markers of nitrosative stress, including nitrotyrosine (NT), inducible NO synthase (iNOS), endothelial NO synthase (eNOS), myeloperoxidase (MPO), and xanthine oxidase (XO) in bronchial biopsies and bronchoalveolar lavage from patients with mild to severe stable COPD compared with control groups (smokers with normal lung function and nonsmokers).. The expression of NT, iNOS, eNOS, MPO and XO in the bronchial mucosa and bronchoalveolar lavage of patients was measured by using immunohistochemistry, Western blotting, and ELISA and correlated with the inflammatory cell profile.. Patients with severe COPD in stable phase had higher numbers of NT(+) and MPO(+) cells in their bronchial submucosa compared with mild/moderate COPD, smokers with normal lung function, and nonsmokers (P < .01). iNOS(+) and eNOS(+) but not XO(+) cells were significantly increased in smokers with COPD or normal lung function compared with nonsmokers (P < .05 and P < .01, respectively). In patients with COPD, the number of MPO(+) cells was significantly correlated with the number of neutrophils (r = +0.61; P < .0025) in the bronchial submucosa. Furthermore, the number of NT(+) and MPO(+) cells was negatively correlated with postbronchodilator FEV(1).. These data suggest that nitrosative stress, mainly mediated by MPO and neutrophilic inflammation, may contribute to the pathogenesis of severe COPD.

    Topics: Aged; Bronchi; Bronchitis; Case-Control Studies; Cell Count; Epithelium; Female; Forced Expiratory Volume; Humans; Immunohistochemistry; Male; Middle Aged; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oxidative Stress; Peroxidase; Pulmonary Disease, Chronic Obstructive; Reactive Nitrogen Species; Respiratory Mucosa; Smoking; Tyrosine; Vital Capacity; Xanthine Oxidase

2005
Ebselen suppresses late airway responses and airway inflammation in guinea pigs.
    Free radical biology & medicine, 2002, Mar-01, Volume: 32, Issue:5

    Although ebselen, a seleno-organic compound, inhibits inflammation in various animal models, its efficacy as an anti-asthma drug remains to be clarified. In this study, we investigated the inhibitory effect of ebselen on a guinea pig asthma model. Ebselen was orally administered at dosages of 1-20 mg/kg 2 h before an ovalbumin (OA) challenge, and then airway responses, airway inflammation, the generation of superoxide, H(2)O(2), and nitrotyrosine, and the induction of inducible nitric oxide synthase (iNOS) were evaluated. Sensitized animals challenged with OA aerosol showed dual airflow limitations, i.e., immediate and late airway responses (IAR and LAR). Ebselen significantly inhibited LAR at dosages greater than 10 mg/kg, but did not inhibit IAR at any dosage. Bronchoalveolar lavage (BAL) examination showed that airway inflammation was significantly suppressed by ebselen at 10 mg/kg. The generation of superoxide and H(2)O(2) occurred on endothelial cells of LAR bronchi, and was inhibited by 10 mg/kg of ebselen. Superoxide generation was inhibited by diphenyleneiodonium chloride (DPI), a NAD(P)H oxidase inhibitor, but not by allopurinol, a xanthine oxidase inhibitor. Immunoreactivities for iNOS and nitrotyrosine were also observed on endothelial cells of LAR bronchi and were abolished in ebselen-treated animals. The present findings suggest that ebselen can be applied as a new therapeutic agent for asthma. The possible mechanisms by which ebselen inhibits LAR likely involve suppression of oxidant formation and iNOS induction in endothelial cells.

    Topics: Airway Resistance; Animals; Antineoplastic Agents, Alkylating; Antioxidants; Area Under Curve; Asthma; Azoles; Bronchitis; Bronchoalveolar Lavage Fluid; Cyclophosphamide; Disease Models, Animal; Endothelium, Vascular; Enzyme Activation; Female; Guinea Pigs; Hydrogen Peroxide; Immunoenzyme Techniques; Isoindoles; Lung; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Organoselenium Compounds; Ovalbumin; Peptide Fragments; Rabbits; Reactive Nitrogen Species; Reactive Oxygen Species; Respiratory Function Tests; Respiratory Hypersensitivity; Superoxides; Tyrosine

2002