3-nitrotyrosine and Atrial-Remodeling

3-nitrotyrosine has been researched along with Atrial-Remodeling* in 1 studies

Other Studies

1 other study(ies) available for 3-nitrotyrosine and Atrial-Remodeling

ArticleYear
Association of low GLP-1 with oxidative stress is related to cardiac disease and outcome in patients with type 2 diabetes mellitus: a pilot study.
    Free radical biology & medicine, 2015, Volume: 81

    Oxidative stress (OS) contributes to cardiovascular damage in type 2 diabetes mellitus (T2DM). The peptide glucagon-like peptide-1 (GLP-1) inhibits OS and exerts cardiovascular protective actions. Our aim was to investigate whether cardiac remodeling (CR) and cardiovascular events (CVE) are associated with circulating GLP-1 and biomarkers of OS in T2DM patients. We also studied GLP-1 antioxidant effects in a model of cardiomyocyte lipotoxicity. We examined 72 T2DM patients with no coronary or valve heart disease and 14 nondiabetic subjects. A median of 6 years follow-up information was obtained in 60 patients. Circulating GLP-1, dipeptidyl peptidase-4 activity, and biomarkers of OS were quantified. In T2DM patients, circulating GLP-1 decreased and OS biomarkers increased, compared with nondiabetics. Plasma GLP-1 was inversely correlated with serum 3-nitrotyrosine in T2DM patients. Patients showing high circulating 3-nitrotyrosine and low GLP-1 levels exhibited CR and higher risk for CVE, compared to the remaining patients. In palmitate-stimulated HL-1 cardiomyocytes, GLP-1 reduced cytosolic and mitochondrial oxidative stress, increased mitochondrial ATP synthase expression, partially restored mitochondrial membrane permeability and cytochrome c oxidase activity, blunted leakage of creatine to the extracellular medium, and inhibited oxidative damage in total and mitochondrial DNA. These results suggest that T2DM patients with reduced circulating GLP-1 and exacerbated OS may exhibit CR and be at higher risk for CVE. In addition, GLP-1 exerts antioxidant effects in HL-1 palmitate-overloaded cardiomyocytes. It is proposed that therapies aimed to increase GLP-1 may counteract OS, protect from CR, and prevent CVE in patients with T2DM.

    Topics: 8-Hydroxy-2'-Deoxyguanosine; Aged; Animals; Antioxidants; Atrial Remodeling; Cardiomegaly; Cardiovascular System; Case-Control Studies; Cell Line; Deoxyguanosine; Diabetes Mellitus, Type 2; Dipeptidyl Peptidase 4; Female; Glucagon-Like Peptide 1; Humans; Male; Mice; Middle Aged; Mitochondria; Myocytes, Cardiac; Oxidative Stress; Palmitic Acid; Pilot Projects; Retrospective Studies; Tyrosine; Ventricular Remodeling

2015