3-methylkaempferol has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 3-methylkaempferol and Inflammation
Article | Year |
---|---|
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |
Effects of amburoside A and isokaempferide, polyphenols from Amburana cearensis, on rodent inflammatory processes and myeloperoxidase activity in human neutrophils.
The present study evaluated the anti-inflammatory activity of amburoside A (a phenol glucoside) and isokaempferide (a flavonol) isolated from the trunk bark of Amburana cearensis, a medicinal plant used in northeast Brazil for the treatment of asthma. Animals (male Wistar rats or Swiss mice) pre-treated with amburoside A (25 and 50 mg/kg) or isokaempferide (12.5, 25 and 50 mg/kg), orally or intraperitoneally, showed a significant inhibition of the paw oedema induced by carrageenan (1%), prostaglandin E(2) (30 nmol/paw), histamine (200 microg/paw) or serotonin (200 microg/paw). Histological and morphometric evaluations of the rat paw oedema induced by carrageenan showed that amburoside A and isokaempferide also inhibited the accumulation of inflammatory cells. Amburoside A reduced significantly the paw oedema and the increase in vascular permeability induced by dextran, as related to the control group. Similar results were observed with the isokaempferide pre-treatment. Furthermore, amburoside A or isokaempferide inhibited both leucocyte and neutrophil migrations, in mouse peritoneal cavity, after the carrageenan injection. The polyphenols were not cytotoxic and blocked N-formyl-methyl-leucyl-phenylalanine-induced myeloperoxidase release and activity in human neutrophils. In addition, amburoside A and isokaempferide at 50 and 100 microg/ml concentrations reduced significantly the lipopolysaccharide-mediated increase in tumour necrosis factor-alpha (TNF-alpha) levels. These results provide, for the first time, evidence to support the anti-inflammatory activity of amburoside A and isokaempferide that seems to be related to an inhibition of inflammatory mediators, such as TNF-alpha, as well as histamine, serotonin and prostaglandin E(2), besides leucocyte infiltration in a dose- or concentration-dependent manner. These anti-inflammatory effects can be explained, at least in part, by the ability of these compounds to reduce neutrophil degranulation, myeloperoxidase activity, mediators as well as TNF-alpha secretion. Topics: Animals; Anti-Inflammatory Agents; Brazil; Disease Models, Animal; Dose-Response Relationship, Drug; Fabaceae; Flavonoids; Glucosides; Humans; Inflammation; Inflammation Mediators; Male; Medicine, Traditional; Mice; Neutrophils; Peroxidase; Phenols; Plant Bark; Plant Extracts; Polyphenols; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha | 2009 |