3-deoxyvasicine and Cognitive-Dysfunction

3-deoxyvasicine has been researched along with Cognitive-Dysfunction* in 1 studies

Other Studies

1 other study(ies) available for 3-deoxyvasicine and Cognitive-Dysfunction

ArticleYear
Ameliorative effect of deoxyvasicine on scopolamine-induced cognitive dysfunction by restoration of cholinergic function in mice.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2019, Volume: 63

    Aerial parts of Peganum harmala Linn is used as a traditional medical herb for treatment of amnesia in Uighur medicine in China. Deoxyvasicine (DVAS) is one of the chief active ingredients in P. harmala, it possesses strong acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in vitro, but the therapeutic effect and mechanisms on amnesia in vivo are unclear.. The objective of this study was to investigate the improvement effect of DVAS from P. harmala in learning and memory deficits of scopolamine-induced mice and elucidate the underlying mechanisms involved.. Mice were pretreated with DVAS (5, 15 and 45 mg/kg) and huperzine-A (0.2 mg/kg) by gavage for 7 days, and subsequently were daily intraperitoneally injected with scopolamine (1 mg/kg) to induce learning and memory deficits and behavioral performance was assessed by Morris water maze. To further evaluate the potential mechanisms of DVAS in improving learning and memory capabilities, pathological change, levels of various biochemical markers and protein expressions related to cholinergic system, oxidative stress, and neuroinflammation were examined.. The results showed that DVAS could alleviate learning and memory deficits in scopolamine-treated mice. DVAS could regulate cholinergic function by inhibiting AChE and activating choline acetyltransferase (ChAT) activities and protein expressions. DVAS could induce brain-derived neurotrophic factor and protect hippocampal pyramidal cells against neuronal damage. DVAS also enhanced antioxidant defense via increasing the antioxidant enzyme level and activity of glutathione peroxidase, and anti-inflammatory function through suppressing tumor necrosis factor-α. Additionally, DVAS could regulate the neurotransmitters by elevating acetylcholine, 5-hydroxytryptamine, γ-aminobutyric acid and reducing 5-hydroxyindole-3-acetic acid and glutamic acid.. Results illustrated that DVAS may be a promising candidate compound against amnesia via restoration of cholinergic function, regulating neurotransmitters, attenuating neuroinflammation and oxidative stress.

    Topics: Acetylcholine; Alkaloids; Amnesia; Animals; Antioxidants; Brain-Derived Neurotrophic Factor; Cholinesterase Inhibitors; Cognitive Dysfunction; Hippocampus; Male; Memory; Memory Disorders; Mice, Inbred C57BL; Neurotransmitter Agents; Oxidative Stress; Peganum; Quinazolines; Scopolamine; Sesquiterpenes

2019