3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic-acid and Neuralgia

3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic-acid has been researched along with Neuralgia* in 3 studies

Other Studies

3 other study(ies) available for 3-amino-4-(3-hexylphenylamino)-4-oxobutylphosphonic-acid and Neuralgia

ArticleYear
Fingolimod reduces neuropathic pain behaviors in a mouse model of multiple sclerosis by a sphingosine-1 phosphate receptor 1-dependent inhibition of central sensitization in the dorsal horn.
    Pain, 2018, Volume: 159, Issue:2

    Multiple sclerosis (MS) is an autoimmune-inflammatory neurodegenerative disease that is often accompanied by a debilitating neuropathic pain. Disease-modifying agents slow down the progression of multiple sclerosis and prevent relapses, yet it remains unclear if they yield analgesia. We explored the analgesic potential of fingolimod (FTY720), an agonist and/or functional antagonist at the sphingosine-1-phosphate receptor 1 (S1PR1), because it reduces hyperalgesia in models of peripheral inflammatory and neuropathic pain. We used a myelin oligodendrocyte glycoprotein 35 to 55 (MOG35-55) mouse model of experimental autoimmune encephalomyelitis, modified to avoid frank paralysis, and thus, allow for assessment of withdrawal behaviors to somatosensory stimuli. Daily intraperitoneal fingolimod reduced behavioral signs of central neuropathic pain (mechanical and cold hypersensitivity) in a dose-dependent and reversible manner. Both autoimmune encephalomyelitis and fingolimod changed hyperalgesia before modifying motor function, suggesting that pain-related effects and clinical neurological deficits were modulated independently. Fingolimod also reduced cellular markers of central sensitization of neurons in the dorsal horn of the spinal cord: glutamate-evoked Ca signaling and stimulus-evoked phospho-extracellular signal-related kinase ERK (pERK) expression, as well as upregulation of astrocytes (GFAP) and macrophage/microglia (Iba1) immunoreactivity. The antihyperalgesic effects of fingolimod were prevented or reversed by the S1PR1 antagonist W146 (1 mg/kg daily, i.p.) and could be mimicked by either repeated or single injection of the S1PR1-selective agonist SEW2871. Fingolimod did not change spinal membrane S1PR1 content, arguing against a functional antagonist mechanism. We conclude that fingolimod behaves as an S1PR1 agonist to reduce pain in multiple sclerosis by reversing central sensitization of spinal nociceptive neurons.

    Topics: Anilides; Animals; Central Nervous System Sensitization; Disease Models, Animal; eIF-2 Kinase; Female; Fingolimod Hydrochloride; Immunosuppressive Agents; Male; Mice; Mice, Inbred C57BL; Motor Activity; Multiple Sclerosis; Myelin-Oligodendrocyte Glycoprotein; Neuralgia; Organophosphonates; Oxadiazoles; Pain Threshold; Peptide Fragments; Receptors, Lysosphingolipid; Sphingosine-1-Phosphate Receptors; Spinal Cord; Spinal Nerve Roots; Subcellular Fractions; Thiophenes

2018
Antinociceptive effects of FTY720 during trauma-induced neuropathic pain are mediated by spinal S1P receptors.
    Biological chemistry, 2015, Volume: 396, Issue:6-7

    FTY720 (fingolimod) is, after its phosphorylation by sphingosine kinase (SPHK) 2, a potent, non-selective sphingosine-1-phosphate (S1P) receptor agonist. FTY720 has been shown to reduce the nociceptive behavior in the paclitaxel model for chemotherapy-induced neuropathic pain through downregulation of S1P receptor 1 (S1P1) in microglia of the spinal cord. Here, we investigated the mechanisms underlying the antinociceptive effects of FTY720 in a model for trauma-induced neuropathic pain. We found that intrathecal administration of phosphorylated FTY720 (FTY720-P) decreased trauma-induced pain behavior in mice, while intraplantar administered FTY720-P had no effect. FTY720-P, but not FTY720, reduced the nociceptive behavior in SPHK2-deficient mice, suggesting the involvement of S1P receptors. Fittingly, intrathecal administration of antagonists for S1P1 or S1P3, W146 and Cay10444 respectively, abolished the antinociceptive effects of systemically administered FTY720, demonstrating that activation of both receptors in the spinal cord is necessary to induce antinociceptive effects by FTY720. Accordingly, intrathecal administration of S1P1 receptor agonists was not sufficient to evoke an antinociceptive effect. Taken together, the data show that, in contrast to its effects on chemotherapy-induced neuropathy, FTY720 reduces trauma-induced neuropathic pain by simultaneous activation of spinal S1P1 and S1P3 receptor subtypes.

    Topics: Analgesics; Anilides; Animals; In Situ Hybridization; Lysophospholipids; Male; Mice; Neuralgia; Organophosphates; Organophosphonates; Phosphotransferases (Alcohol Group Acceptor); Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Wounds and Injuries

2015
The development and maintenance of paclitaxel-induced neuropathic pain require activation of the sphingosine 1-phosphate receptor subtype 1.
    The Journal of biological chemistry, 2014, Jul-25, Volume: 289, Issue:30

    The ceramide-sphingosine 1-phosphate (S1P) rheostat is important in regulating cell fate. Several chemotherapeutic agents, including paclitaxel (Taxol), involve pro-apoptotic ceramide in their anticancer effects. The ceramide-to-S1P pathway is also implicated in the development of pain, raising the intriguing possibility that these sphingolipids may contribute to chemotherapy- induced painful peripheral neuropathy, which can be a critical dose-limiting side effect of many widely used chemotherapeutic agents.We demonstrate that the development of paclitaxel-induced neuropathic pain was associated with ceramide and S1P formation in the spinal dorsal horn that corresponded with the engagement of S1P receptor subtype 1 (S1PR(1))- dependent neuroinflammatory processes as follows: activation of redox-sensitive transcription factors (NFκB) and MAPKs (ERK and p38) as well as enhanced formation of pro-inflammatory and neuroexcitatory cytokines (TNF-α and IL-1β). Intrathecal delivery of the S1PR1 antagonist W146 reduced these neuroinflammatory processes but increased IL-10 and IL-4, potent anti-inflammatory/ neuroprotective cytokines. Additionally, spinal W146 reversed established neuropathic pain. Noteworthy, systemic administration of the S1PR1 modulator FTY720 (Food and Drug Administration- approved for multiple sclerosis) attenuated the activation of these neuroinflammatory processes and abrogated neuropathic pain without altering anticancer properties of paclitaxel and with beneficial effects extended to oxaliplatin. Similar effects were observed with other structurally and chemically unrelated S1PR1 modulators (ponesimod and CYM-5442) and S1PR1 antagonists (NIBR-14/15) but not S1PR1 agonists (SEW2871). Our findings identify for the first time the S1P/S1PR1 axis as a promising molecular and therapeutic target in chemotherapy-induced painful peripheral neuropathy, establish a mechanistic insight into the biomolecular signaling pathways, and provide the rationale for the clinical evaluation of FTY720 in chronic pain patients.

    Topics: Anilides; Animals; Antineoplastic Agents, Phytogenic; Cytokines; Enzyme Activation; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Indans; Lysophospholipids; Male; Neuralgia; Organophosphonates; Oxadiazoles; Paclitaxel; Propylene Glycols; Rats; Rats, Sprague-Dawley; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Sphingosine-1-Phosphate Receptors; Thiazoles; Thiophenes

2014