3-8-dihydroxy-6h-dibenzo(b-d)pyran-6-one has been researched along with Weight-Gain* in 2 studies
1 trial(s) available for 3-8-dihydroxy-6h-dibenzo(b-d)pyran-6-one and Weight-Gain
Article | Year |
---|---|
Effect of ellagic acid on body weight, nutrient digestibility, fecal microbiota, and urolithin A metabolism in Thoroughbred horses.
This study aimed to investigate the effects of ellagic acid (EA) supplementation on body weight (BW), nutrient digestibility, fecal microbiota, blood biochemical indices, and urolithin A metabolism in 1-yr-old Thoroughbred horses. A group of 18 1-yr-old Thoroughbred horses, with an average weight of 339.00 ± 30.11 kg, were randomly allocated into three groups of six horses each (three males and three females). The control group (n = 6) received only the basal diet, whereas test groups I (n = 6) and II (n = 6) were fed the basal diet supplemented with 15 mg/kg BW/d and 30 mg/kg BW/d of EA, respectively, for 40-d. The results showed that test group I and II horses had a significant increase in total weight gain by 49.47% and 62.74%, respectively, compared to the control group. The digestibility of various components in the diets of the test group horses was improved, including dry matter, organic matter, gross energy, neutral detergent fiber, acid detergent fiber, and calcium. Additionally, the digestibility of crude protein and phosphorus (P) in test group II horses increased significantly by 10.96% and 33.56% (P < 0.05), respectively. Moreover, EA supplementation significantly increased the fecal abundance of Firmicutes, Bacteroidetes (P < 0.05), Fibrobacterota, p-251-o5, Desemzia incerta (P < 0.05), and Fibrobacter sp. (P < 0.05), while reducing the abundance of Proteobacteria, Pseudomonadaceae, Pseudomonas, and Cupriavidus pauculus (P < 0.05 or P < 0.01). Fecal samples from test group II showed 89.47%, 100%, and 86.15% increases in the concentrations of acetic acid, valeric acid, and total volatile fatty acids, respectively. In addition, the plasma levels of total protein, and globulin increased significantly in test groups I (7.88% and 11.35%, respectively) and II (13.44% and 16.07%, respectively) compared to those in the control group (P < 0.05). The concentration of urolithin A in fecal and urine samples was positively correlated with increasing doses of EA. These findings suggest that supplemental feeding of EA improved nutrient digestibility, blood biochemical indices, and fecal microbiota in 1-yr-old Thoroughbred horses, promoting growth and development.. Ellagic acid (EA), a plant-derived feed additive, has beneficial physiological effects, including antioxidant and anti-inflammatory properties as well as intestinal microbiota regulation. Young Thoroughbred horses exhibit rapid growth and require ample nourishment. However, the underdeveloped functional anatomy of their gastrointestinal tract restricts the rate of feed utilization. Therefore, improving digestive tract function in horses at this stage promotes intestinal homeostasis, improves antioxidant and anti-inflammatory capabilities, and supports rapid growth and health. This study revealed that supplemental feeding of 1-yr-old Thoroughbred horses with EA improved nutrient digestibility and fecal floral diversity, leading to enhanced growth performance. The optimal dose was 30 mg/kg body weight. Topics: Animal Feed; Animals; Diet; Dietary Fiber; Digestion; Ellagic Acid; Feces; Female; Horses; Male; Microbiota; Nutrients; Weight Gain | 2023 |
1 other study(ies) available for 3-8-dihydroxy-6h-dibenzo(b-d)pyran-6-one and Weight-Gain
Article | Year |
---|---|
Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice.
Obesity leads to multiple health problems, including diabetes, fatty liver, and even cancer. Here, we report that urolithin A (UA), a gut-microflora-derived metabolite of pomegranate ellagitannins (ETs), prevents diet-induced obesity and metabolic dysfunctions in mice without causing adverse effects. UA treatment increases energy expenditure (EE) by enhancing thermogenesis in brown adipose tissue (BAT) and inducing browning of white adipose tissue (WAT). Mechanistically, UA-mediated increased thermogenesis is caused by an elevation of triiodothyronine (T3) levels in BAT and inguinal fat depots. This is also confirmed in UA-treated white and brown adipocytes. Consistent with this mechanism, UA loses its beneficial effects on activation of BAT, browning of white fat, body weight control, and glucose homeostasis when thyroid hormone (TH) production is blocked by its inhibitor, propylthiouracil (PTU). Conversely, administration of exogenous tetraiodothyronine (T4) to PTU-treated mice restores UA-induced activation of BAT and browning of white fat and its preventive role on high-fat diet (HFD)-induced weight gain. Together, these results suggest that UA is a potent antiobesity agent with potential for human clinical applications. Topics: Adipocytes, Brown; Adipocytes, White; Adipose Tissue, Brown; Adipose Tissue, White; Animals; Anti-Obesity Agents; Coumarins; Diet, High-Fat; Energy Metabolism; Fatty Liver; Glucose Intolerance; Insulin Resistance; Maillard Reaction; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Propylthiouracil; Thermogenesis; Triiodothyronine; Weight Gain | 2020 |