3-6-dihydroxyflavone has been researched along with Cell-Transformation--Neoplastic* in 3 studies
3 other study(ies) available for 3-6-dihydroxyflavone and Cell-Transformation--Neoplastic
Article | Year |
---|---|
3,6-Dihydroxyflavone regulates microRNA-34a through DNA methylation.
Breast cancer is the common cancer in China. In previous study, we determined that 3,6-dihydroxyflavone (3,6-DHF) increases miR-34a significantly in breast carcinogenesis, but the mechanism remains unclear.. We used qRT-PCR to analyze miR-34a and ten-eleven translocation (TET)1, TET2, TET3 levels in breast cancer cells. With a cellular breast carcinogenesis model and an experimental model of carcinogenesis in rats, TET1 levels were evaluated by western blot analysis and immunofluorescence. TET1 and 5hmC (5-hydroxymethylcytosine) levels were evaluated by immunofluorescence in nude mouse xenografts of MDA-MB-231 cells. Chromatin immunoprecipitation(ChIP) assayed for TET1 on the TET1 promoter, and dot blot analysis of DNA 5hmC was performed in MDA-MB-231 cells. We evaluated the mechanism of 3,6-DHF on the expression of tumor suppressor miR-34a by transfecting them with DNA methyltransferase (DNMT)1 plasmid and TET1 siRNA in breast cancer cells. Methylation-specific PCR detected methylation of the miR-34a promoter.. First, we found that 3,6-DHF promotes the expression of TET1 during carcinogen-induced breast carcinogenesis in MCF10A cells and in rats. 3,6-DHF also increased TET1 and 5hmC levels in MDA-MB-231 cells. Further study indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibited the 3,6-DHF reactivation effect on expression of miR-34a in breast cancer cells. Methylation-specific PCR assays indicated that TET1 siRNA and pcDNA3/Myc-DNMT1 inhibit the effect of 3,6-DHF on the demethylation of the miR-34a promoter.. Our study showed that 3,6-DHF effectively increases TET1 expression by inhibiting DNMT1 and DNA hypermethylation, and consequently up-regulates miR-34a in breast carcinogenesis. Topics: Animals; Breast Neoplasms; Cell Line, Tumor; Cell Transformation, Neoplastic; DNA (Cytosine-5-)-Methyltransferase 1; DNA Methylation; Female; Flavonoids; Gene Expression Regulation, Neoplastic; Humans; Mice; MicroRNAs; Mixed Function Oxygenases; Promoter Regions, Genetic; Proto-Oncogene Proteins; Rats; RNA Interference; RNA, Small Interfering | 2017 |
3,6-Dihydroxyflavone Suppresses Breast Carcinogenesis by Epigenetically Regulating miR-34a and miR-21.
Our previous study selected a promising chemopreventive agent 3,6-dihydroxyflavone (3,6-DHF) and found that 3,6-DHF significantly upregulates miR-34a and downregulates miR-21 in breast carcinogenesis, yet the upstream and downstream events of the anticancer mechanism remain unclear. The present study showed that 3,6-DHF cotreatment effectively inhibits carcinogens-induced breast carcinogenic transformation in human breast epithelial MCF10A cells. The data revealed the significant downregulation of miR-34a and upregulation of miR-21 in breast carcinogenesis, which could be mitigated by 3,6-DHF treatment. Methylation-specific PCR detections showed that 3,6-DHF inhibits the hypermethylation of the miR-34a promoter. Further studies indicated that 3,6-DHF is an effective methyltransferase (DNMT)1 inhibitor, docking to the putative cytosine pocket of the protein, and thus decreases the DNMT activity in a dose-dependent manner. Moreover, the ChIP-qPCR analysis for histone modifications showed that 3,6-DHF treatment significantly lowers the H3K9-14ac on the miR-21 promoter. In addition, our study revealed that 3,6-DHF represses the PI3K/Akt/mTOR signaling pathway in breast carcinogenesis in vitro and in vivo. Inhibition of miR-34a or overexpression of miR-21 significantly reduced the effects of 3,6-DHF on Notch-1 and PTEN, and consequently weakened the suppression of 3,6-DHF on PI3K/Akt/mTOR. We concluded that 3,6-DHF upregulates miR-34a via inhibiting DNMT1 and hypermethylation, whereas downregulates miR-21 by modulating histone modification, and consequently suppresses the PI3K/Akt/mTOR signaling pathway in breast carcinogenesis. Topics: Animals; Apoptosis; Blotting, Western; Breast Neoplasms; Cell Proliferation; Cell Transformation, Neoplastic; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Epigenomics; Female; Flavonoids; Fluorescent Antibody Technique; Gene Expression Regulation, Neoplastic; Humans; Immunoenzyme Techniques; Mice; Mice, Inbred BALB C; Mice, Nude; MicroRNAs; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; TOR Serine-Threonine Kinases; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2015 |
MicroRNA-34a and microRNA-21 play roles in the chemopreventive effects of 3,6-dihydroxyflavone on 1-methyl-1-nitrosourea-induced breast carcinogenesis.
miRNAs are very important regulators in biological processes such as development, cellular differentiation, and carcinogenesis. Given the important role of miRNAs in tumorigenesis and development, it is worth investigating whether some miRNAs play roles in the anticancer mechanism of flavonoids. However, such a role has not yet been reported. We previously selected the promising anticancer agent 3,6-dihydroxyflavone (3,6-DHF) in pharmacodynamic experiments, which may serve as a leading compound for developing more potent anticancer drugs or chemopreventive supplements. The present study aims to investigate the chemopreventive activities of 3,6-DHF against mammary carcinogenesis.. The experimental model of breast carcinogenesis was developed by intraperitoneal injection of 1-methyl-1-nitrosourea (MNU). The bioavailability of 3,6-DHF in rats was detected by HPLC. The expression of microRNA-34a (miR-34a) and microRNA-21 (miR-21) was evaluated by real-time quantitative RT-PCR. Cell apoptosis was analyzed by flow cytometry or terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. The mitochondrial membrane potential was assayed using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide dye by confocal laser scanning microscopy. The level of cytochrome C in cytosol was evaluated by western blotting.. Our study showed that oral administration of 3,6-DHF effectively suppressed MNU-induced breast carcinogenesis in rats, decreasing the cancer incidence by 35.7%. The detection of bioavailability indicated that the concentration of 3,6-DHF was 2.5 ± 0.4 μg/ml in plasma of rats within 2 hours after administration, and was 21.7 ± 3.8 μg/ml in urine within 24 hours. Oral administration of 3,6-DHF to BALB/c nude mice bearing breast cancer cell xenografts also significantly suppressed tumor growth in vivo. Furthermore, our study revealed that the global upregulation of miR-21 and downregulation of miR-34a in breast carcinogenesis could be reversed by 3,6-DHF, which significantly upregulated miR-34a expression and decreased miR-21 expression - inducing apoptosis of breast cancer cells in vitro and in vivo. Overexpression of miR-34a induced by plasmid transfection or inhibition of miR-21 by oligonucleotides markedly promoted the pro-apoptotic effect of 3,6-DHF. Inactivation of miR-34a or overproduction of miR-21 compromised the anticancer effects of 3,6-DHF.. These findings indicate that 3,6-DHF is a potent natural chemopreventive agent, and that miR-34a and miR-21 play roles in MNU-induced breast carcinogenesis and the anticancer mechanism of flavonoids. Topics: Animals; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cytochromes c; Female; Flavonoids; Gene Expression Regulation, Neoplastic; Mammary Neoplasms, Animal; Methylnitrosourea; Mice; Mice, Inbred BALB C; MicroRNAs; Rats; Rats, Sprague-Dawley; Transplantation, Heterologous | 2012 |