3-5-dihydroxy-4--methoxystilbene has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 3-5-dihydroxy-4--methoxystilbene and Inflammation
Article | Year |
---|---|
Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases.
Resveratrol is a naturally occurring stilbene which has shown promising results as treatment for several neurodegenerative diseases. However, its application is limited due to its low efficacy and bioavailability. Here, we have designed and synthesized alkylated resveratrol prodrugs combining structural modification to improve antioxidant and anti-inflammatory properties and the preparation of prodrugs to extend drug bioavailability. For comparison we also studied resveratrol prodrugs and alkylated resveratrol derivatives. Methylated and butylated resveratrol derivatives showed the best in vitro neuroprotective and anti-inflammatory activity. The glucosyl- and glucosyl-acyl- prodrugs of these derivatives showed lower toxicity on zebra fish embryo. When neuroprotection was examined on pentylenetetrazole challenged zebra fish, they were capable of reverting neuronal damage but to a lower extent than resveratrol. Nevertheless, 3-O-(6'-O-octanoyl)-β-d-glucopyranoside resveratrol (compound 8) recovered AChE activity over 100% whereas resveratrol only up to 92%. In a 3-nitropropionic acid mice model of Huntington's disease, resveratrol derivative 8 delayed the onset and reduced the severity of HD-like symptoms, by improving locomotor activity and protecting against weight loss. Its effects involved an equal antioxidant but better anti-inflammatory profile than resveratrol as shown by SOD2 expression in brain tissue and circulating levels of IL-6 (11 vs 18 pg/mL), respectively. Finally, the octanoyl chain in compound 8 could be playing a role in inflammation and neuronal development indicating it could be acting as a double-drug, instead of as a prodrug. Topics: Alkylation; Animals; Cell Survival; Cytokines; Dose-Response Relationship, Drug; Humans; Inflammation; Mice; Mice, Inbred C57BL; Molecular Structure; Neurodegenerative Diseases; Neurons; Nitro Compounds; Prodrugs; Propionates; RAW 264.7 Cells; Structure-Activity Relationship; Tumor Cells, Cultured; Zebrafish | 2018 |
Desoxyrhapontigenin inhibits RANKL‑induced osteoclast formation and prevents inflammation‑mediated bone loss.
Desoxyrhapontigenin (DRG), a stilbene compound from Rheum undulatum, has been found to exhibit various pharmacological activities, however, its impact on osteoclast formation has not been investigated. The present study investigated the effect of DRG on receptor activator of nuclear factor‑κB ligand (RANKL)‑induced osteoclast differentiation in mouse bone marrow macrophages (BMMs) and inflammation‑induced bone loss in vivo. BMMs or RAW264.7 cells were treated with DRG, followed by an evaluation of cell viability, RANKL‑induced osteoclast differentiation, actin‑ring formation and resorption pits activity. The effects of DRG on the RANKL‑induced phosphorylation of MAPK and the expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and c‑Fos were evaluated using western blot analysis once the BMMs were exposed to RANKL and DRG. The expression levels of osteoclast marker genes were also evaluated using western blot analysis and reverse transcription‑quantitative polymerase chain reaction A lipopolysaccharide (LPS)‑induced murine bone loss model was used to evaluate the protective effect of DRG on inflammation‑induced bone‑loss. The results demonstrated that DRG suppressed the RANKL‑induced differentiation of BMMs into osteoclasts, osteoclast actin‑ring formation and bone resorption activity in a dose‑dependent manner. Furthermore, DRG significantly inhibited LPS‑induced bone loss in a mouse model. At the molecular level, DRG inhibited the RANKL‑induced activation of extracellular signal‑regulated kinase, the expression of c‑Fos, and the induction of NFATc1, a crucial transcription factor for osteoclast formation. DRG decreased the expression levels of osteoclast marker genes, including matrix metalloproteinase‑9, tartrate‑resistant acid phosphatase and cathepsin K. In conclusion, these findings suggested that DRG inhibited the differentiation of BMMs into mature osteoclasts by suppressing the RANKL‑induced activator protein‑1 and NFATc1 signaling pathways, and may be a potential candidate for treating and/or preventing osteoclast‑associated diseases, including osteoporosis. Topics: Actins; Animals; Bone Marrow Cells; Bone Resorption; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Inflammation; Macrophages; Mice; NFATC Transcription Factors; Osteoclasts; Osteogenesis; Phosphorylation; Proto-Oncogene Proteins c-fos; RANK Ligand; RAW 264.7 Cells; Stilbenes | 2018 |