3-4-dihydroxyphenyllactic-acid has been researched along with Hyperhomocysteinemia* in 3 studies
3 other study(ies) available for 3-4-dihydroxyphenyllactic-acid and Hyperhomocysteinemia
Article | Year |
---|---|
Cardiovascular Protective Effects of Salvianic Acid A on
The onsets of left ventricular hypertrophy (LVH) and endothelial dysfunction (ED) in diabetics, especially in those with elevated homocysteine (Hcy), precede the development of cardiovascular (CV) events. Salvianic acid A (SAA) is a renowned Traditional Chinese Medicine (TCM) that has been applied in the treatment of cardiovascular disease for many decades. In this study, we aimed (1) to investigate the CV protective effects of SAA on ameliorating LVH and ED in Topics: Animals; Cardiovascular Diseases; Echocardiography; Female; Hyperhomocysteinemia; Lactates; Mice | 2017 |
Danshensu protects vascular endothelia in a rat model of hyperhomocysteinemia.
To examine whether danshensu could protect vascular endothelia in a rat model of hyperhomocysteinemia.. The model was established by feeding rats with a methionine-rich diet (1 g·kg⁻¹·d⁻¹) for 3 months. Immediately following the discontinuation of methionine-rich diet, rats were treated with danshensu (67.5 mg·kg⁻¹·d⁻¹, po) or saline for 3 additional months. One group of rats receiving vitamin mixture (folic acid, vitamin B12 and vitamin B6) was included as a positive control. One group of rats not exposed to methionine-rich diet was also included as a blank control. The expression of tumor necrosis factor-alpha (TNF-alpha) and intercellular adhesion molecule-1 (ICAM-1) protein in the descending aorta was examined using immunohistochemistry and Western blot. Homocysteine and blood concentration of endothelin and nitric oxide (NO) was also examined.. Methionine-rich diet resulted in accumulation of "foam cells", up-regulated expression of TNF-alpha and ICAM-1 in the descending aorta, and significantly increased serum homocysteine. Plasma endothelin concentration was significantly increased; NO was decreased. Danshensu treatment, either simultaneous to methionine-rich diet or afterwards, attenuated the above mentioned changes.. Chronic treatment with danshensu could prevent/attenuate the formation of atherosclerosis. Potential mechanisms include inhibited expression of representative proinflammatory cytokines and adhesion molecules in arterial endothelia. Changes in homocysteine and circulating molecules that control vascular contraction/relaxation via endothelial cells (eg, endothelin and NO) were also implicated. Topics: Animals; Aorta, Thoracic; Atherosclerosis; Cardiovascular Agents; Diet; Disease Models, Animal; Endothelins; Endothelium, Vascular; Female; Hyperhomocysteinemia; Intercellular Adhesion Molecule-1; Lactates; Male; Methionine; Nitric Oxide; Rats; Rats, Wistar; Tumor Necrosis Factor-alpha | 2010 |
Beneficial effects of danshensu, an active component of Salvia miltiorrhiza, on homocysteine metabolism via the trans-sulphuration pathway in rats.
Elevated plasma total homocysteine (tHcy) level has been established as an independent risk factor for cardiovascular diseases. Danshensu, an active ingredient of Salvia miltiorrhiza, shows wide cardiovascular benefit. However, in terms of its own methylation, danshensu could elevate tHcy level, which would act against its cardiovascular benefit, thus posing a 'therapeutic paradox'. As this paradox has not been fully assessed, we have evaluated the effects of danshensu on tHcy levels to uncover the underlying mechanisms. EXPERIMENT APPROACH: We evaluated the influence of danshensu on homocysteine (Hcy) metabolism in rats with normal tHcy levels and in rat models of elevated tHcy (single intravenous methionine loading model and a hyperhomocysteinemic model after 3 weeks methionine dosing, with and without 3 weeks of danshensu treatment). We also quantified some metabolic intermediates (S-adenosyl methionine, S-adenosyl-l-homocysteine, cysteine and glutathione) relevant to Hcy metabolism in rat liver and kidney.. Acute treatment with a single dose of danshensu in rats with normal tHcy did not change plasma tHcy. In contrast, danshensu significantly lowered tHcy in rats with elevated tHcy. The relatively higher cysteine and glutathione levels after treatment with danshensu indicated that its tHcy-lowering effect was via increased activity of the trans-sulphuration pathway.. Our results suggested that danshensu may act both acutely to increase trans-sulphuration and after chronic exposure to up-regulate the activity of the trans-sulphuration enzymes. The tHcy-lowering effect of danshensu is another cardiovascular benefit provided by S. miltiorrhiza and suggests a potential tHcy-lowering therapy. Topics: Animals; Cardiovascular Agents; Cysteine; Dose-Response Relationship, Drug; Glutathione; Homocysteine; Hyperhomocysteinemia; Lactates; Male; Methionine; Rats; Rats, Sprague-Dawley; Salvia miltiorrhiza | 2009 |